ZASADY
SPORZĄDZANIA
DOKUMENTACJI
GEOLOGICZNO-INŻYNIERSKICH

PAŃSTWOWY INSTYTUT GEOLOGICZNY
WARSZAWA 1999
SPIS TREŚCI

Wprowadzenie — Józef Bażyński .. 7

A. Zasady projektowania prac geologiczno-inżynierskich

1. Przepisy prawne, normy, instrukcje — Lech Wysokiński 8
 1.1. Przepisy prawne .. 8
 1.2. Normy ... 9
 1.3. Wytyczne, instrukcje, materiały archiwalne 12
2. Definicje — Lech Wysokiński .. 13
 2.1. Obiekt budowlany ... 13
 2.2. Fundamenty ... 13
3. Projektowanie prac — Józef Bażyński ... 15
4. Cel prac geologicznych — Zbigniew Frankowski 15
5. Stopień złożoności warunków geologiczno-inżynierskich — Józef Bażyński 17
6. Część tekstowa — Zbigniew Frankowski ... 18
7. Uwagi organizacyjne — Zbigniew Frankowski 19

B. Zasady sporządzania dokumentacji geologiczno-inżynierskich

1. Prace pomiarowe geodezyjne i fotogrametryczne — Józef Bażyński 20
2. Prace geologiczne — Andrzej Dragowski .. 21
 2.1. Odsłonienia naturalne, odkrywki, szybiki i wykopy 21
 2.2. Wiercenia badawcze .. 23
 2.3. Sondy penetracyjne i rdzeniowe .. 23
 2.4. Doły próbne ... 23
 2.5. Nadzór .. 23
3. Analiza zdjęć lotniczych i satelitarnych — Józef Bażyński 24
 3.1. Zdjęcia lotnicze .. 24
 3.2. Zdjęcia satelitarne ... 25
 3.3. Fotointerpretacja wstępna .. 25
 3.4. Fotointerpretacja szczegółowa .. 26
4. Kartografia geologiczno-inżynierska — Andrzej Dragowski 26
 4.1. Mapy ... 26
C. Badania na obszarach działania procesów geodynamicznych

1. Procesy osuwiskowe — Józef Bażyński, Zbigniew Frankowski ... 83
 1.1. Czynniki niekorzystne ... 84
 1.2. Rejony występowania ... 85
 1.3. Charakterystyka ... 85
 1.4. Szczegółowe badania obszarów osuwiskowych ... 85
 1.5. Kategorie geotechniczne stateczności zboczy .. 86

2. Procesy krasowe — Józef Bażyński ... 87
 2.1. Czynniki niekorzystne ... 87
 2.2. Charakterystyka ... 87
 2.3. Badania na obszarach krasowych ... 88
3. Przeobrażenia antropogeniczne — Andrzej Dragowski

4. Procesy i zjawiska antropogeniczne — Andrzej Dragowski

4.1. Charakterystyka i klasyfikacja gruntów antropogenicznych dla celów geologiczno-inżynierskich

4.1.1. Grunty antropogeniczne w pracach kartograficznych

4.1.2. Badanie właściwości gruntów antropogenicznych w celu składowania

4.1.3. Badanie geologiczno-inżynierskie na potrzeby wykorzystania gruntów antropogenicznych jako podłoża budowlanego

4.1.4. Badanie geologiczno-inżynierskie gruntów antropogenicznych jako materiału konstrukcyjnego

4.1.5. Zakres i kierunki badań

4.2. Antropogeniczne przekształcenia środowiska

4.2.1. Odkształcenia na skutek eksploatacji podziemnej

4.2.2. Wyciąganie podłoża wokół składników kopalinowych

4.2.3. Osiadanie powierzchni terenu na skutek odwadniania

4.2.4. Zmiany powierzchni na skutek makrowielkich

4.2.5. Deformacje powierzchni powstające w wyniku eksploatacji otworowej siarki

4.2.6. Zmiany powierzchni terenu na skutek składowania odpadów i gruntów nadkładów w kopalniach odkrywkowych

4.2.7. Zmiany powierzchni terenu w wyniku eksploatacji odkrywkowej

4.2.8. Powstawanie i składowanie gruntów antropogenicznych

4.2.9. Obszary zdewastowane

4.2.10. skały i granty o szczególnej podatności na działania czynników antropogenicznych

D. Badania dla różnych rodzajów budownictwa

1. Budownictwo powszechne — Lech Wysokiński

1.1. Dane ogólne

1.2. Analiza założeń projektowych inwestycji

1.3. Projekt badań

1.4. Badania terenowe

1.5. Badania laboratoryjne

1.6. Dokumentacja z badań

1.7. Avaria lub katastrofa

2. Budownictwo wodne — Józef Bażyński, Zbigniew Frankowski

2.1. Dane ogólne

2.2. Kartowanie geologiczno-inżynierskie

2.3. Badania geofizyczne maszywów skalnych

2.4. Badania geofizyczne na Niżu Polskim

2.5. Roboty geologiczne

2.6. Badania polowe skał

2.7. Badania polowe gruntów słabych

2.8. Badania polowe gruntów gruboziarnistych i kamienistych

2.9. Badania polowe zwietrzelin

2.10. Badania hydrogeologiczne

2.11. Oznaczenie współczynnika filtracji

2.12. Zależność badań od etapu projektowania obiektów hydrotechnicznych

2.12.1. Zakres badań na etapie rozpoznawczym

2.12.2. Zakres badań na etapie szczegółowym

2.12.3. Zakres badań na etapie uzupełniającym

2.12.4. Zakres badań na etapie budowy

2.12.5. Zakres badań na etapie eksploatacji
2.13. Rozpoznanie lokalnych złož materiałów budowlanych 122
2.14. Prognoza wpływu stopnia wodnego na tereny przyległe 123
2.15. Wały przeciwpowodziowe — Lech Wysokiñski 125
 2.15.1. Wstęp .. 125
 2.15.2. Programowanie badań 126
 2.15.3. Wymagania zagęszczenia gruntu w wałe przeciwpowodziowym 130
3. Zasady sporządzania dokumentacji geologiczno-inżynierskich na potrzeby wykonywania
wyrobisk górniczych — Ryszard Kaczyñski, Stanis³aw Rybicki 131
 3.1. Górnictwo odkrywkowe — Ryszard Kaczyñski, Stanis³aw Rybicki 134
 3.1.1. Zale¿noœæ badań od etapu projektowania 134
 3.2. Górnictwo podziemne — Stanis³aw Rybicki 145
 3.2.1. Etap badań wstêpnyczych 145
 3.2.2. Etap badań podstawowych 148
 3.2.3. Dokumentacja geologiczno-inżynierska na etapie badań szczegółowych
 (uzupe³niaj¹cych) .. 151
 3.3. Górnictwo otworowe — Stanis³aw Rybicki 153
5. Budownictwo liniowe — Józef Ba¿yñski .. 156
 5.1. Informacje ogólne .. 156
 5.2. Interpretacja zdjêæ lotniczych 156
 5.3. Badania geofizyczne 158
 5.4. Zale¿noœæ badań od etapu projektowania 159
 5.4.1. Zakres badań na etapie rozpoznawczym 163
 5.4.2. Zakres badań na etapie szczegółowym 163
 5.4.3. Zakres badań na etapie uzupe³niaj¹cych 167
6. Sk³adowiska — Andrzej Dr¹gowski .. 167
 6.1. Wybór lokalizacji i badania podło¿a sk³adowisk 167
 6.2. Badania geologiczno-inżynierskie w celu oceny oddzia³ywania istniejących
 składowisk na środowisko 169
 6.3. Etapy projektowania składowisk 170
 6.4. Projektowanie badań ... 170
 6.5. Bariera geologiczna 171
 6.6. Obiekty likwidujące zagro¿enia środowiska 172
7. Zagospodarowanie przestrzenne — Andrzej Dr¹gowski 173
 7.1. Mapy geologiczno-gospodarcze 174
 7.2. Atlasy geologiczno-inżynierskie miast 175
 7.3. Mapy geologiczno-inżynierskie dla celów planowania przestrzennego w gminach 176
Literatura ... 179
WPROWADZENIE

W poradniku omówiono zasady wykonywania robót geologicznych, przeprowadzania badań oraz sporządzania dokumentacji geologiczno-inżynierskiej w nawiązaniu do rozwiązań określonych w prawie geologicznym i górniczym i odpowiednich rozporządzeniach.

Celem poradnika jest ujednoliconie zasad dokumentowania geologiczno-inżynierskiego, a w szczególności:

1. Omówienie zasad projektowania badań geologiczno-inżynierskich.
2. Określenie sposobów wykonania robót geologicznych i badań geologiczno-inżynierskich, w tym terenowych, laboratoryjnych, kameralnych i specjalistycznych z uwzględnieniem poszczególnych typów budownictwa.
3. Określenie formy opracowania części tekstowej, tabelarycznej i graficznej dokumentacji.

Poradnik metodyczny jest przeznaczony do stosowania przez:
— geologów-dokumentatorów, prowadzących prace i badania geologiczno-inżynierskie, jako wytyczne do sporządzania projektów i dokumentacji geologiczno-inżynierskich,
— pracowników administracji państwowej i samorządowej różnych szczebli w celu właściwego precyzowania zakresów prac geologicznych i kontroli realizacji,
— pracowników uczelni wyższych i innych instytucji prowadzących prace, badania i szkolenie w zakresie geologii inżynierskiej.

Poradnik metodyczny składa się z 4. części:
A. Zasady projektowania prac geologiczno-inżynierskich.
B. Zasady sporządzania dokumentacji geologiczno-inżynierskiej.
C. Badania na obszarach działania procesów geodynamicznych.
D. Badania specyficzne dla różnych rodzajów budownictwa.

Zespół autorski serdecznie dziękuje prof. dr. hab. inż. Zygmuntowi Glazerowi za konsultacje i życzliwe dyskusje podczas opracowywania tekstu.
A. ZASADY PROJEKTOWANIA
PRAC GEOLOGICZNO-INŻYNIERSKICH

1. PRZEPISY PRAWNE, NORMY, INSTRUKCJE

1.1. Przepisy prawne

Obowiązujące przepisy dotyczące dokumentowania i projektowania prac geologicznych wynikają z Prawa geologicznego i górniczego (Dz. U. nr 27 poz. 96) z 4 lutego 1994 r. wraz z późniejszymi zmianami oraz:

— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 18 sierpnia 1994 r. w sprawie projektu prac geologicznych (Dz. U. nr 91 poz. 426).
— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 23 sierpnia 1994 r. w sprawie szczegółowych wymagań jakim powinna odpowiadać dokumentacja hydrogeologiczna i geologiczno-inżynierska (Dz. U. nr 93 poz. 444).
— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 23 sierpnia 1994 r. w sprawie przypadków, w których niezbędne jest sporządzenie dokumentacji innej niż dokumentacja złoża kopaliny, hydrogeologiczna i geologiczno-inżynierska (Dz. U. nr 93 poz. 443).
— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 18 sierpnia 1994 r. w sprawie gromadzenia informacji i próbek uzyskanych w wyniku prowadzenia prac geologicznych i postępowania z próbками i dokumentacjami geologicznymi (Dz. U. nr 91 poz. 425).
— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 26 sierpnia 1994 r. w sprawie kwalifikacji do wykonywania, dozorowania i kierowania pracami geologicznymi (Dz. U. nr 93 poz. 445).

Zestawienie przepisów wraz z komentarzami zawiera numer 12 Przeglądu Geologicznego z 1994 r. (numer specjalny). Nowelizacje przepisów są przewidywane.
1.2. Normy

Zmiana zasad normalizacji od 1994 r. spowodowała, że norm nakazanych obligatoryjnie przez właściwego ministra jest mało i powinny dotyczyć bezpieczeństwa życia ludzkiego, miejsca oraz ochrony środowiska.

Geologii inżynierskiej dotyczy w Polsce obecnie tylko kilka norm, które obligatoryjnie są wskazane do stosowania przez Ministra Spraw Wewnętrznych i Administracji (dawniej Budownictwa). Są to:

- PN–83/B–03010. Ściany oporowe. Obliczenia statyczne i projektowanie.

Nawet norma klasyfikacji gruntów nie jest już obowiązkowa od 1.01.1998 r., co umożliwia stosowanie w Polsce innych opisów gruntów niż normowy (PN–86/B–02480), oczywiście przy powołaniu się na źródło.

Dalsze trudności sprawia przejście z naszego dotychczasowego systemu na przyszły system norm europejskich, który wedle założeń ma się składać z części wspólnej norm obejmujących w całej EWG oraz części norm krajowych, które każdy kraj (czytaj Land), a więc nawet region, może opracować według własnych potrzeb. Ta część oczywiście musi być skorelowana z przepisami państwowymi i EWG.

Przyszłe normy europejskie (EN) dla geotechniki mają numer 1997. Cały system tej normy (obecnie ponad 500 stron maszynopisu) składa się z następujących części:

Dodatkowo dochodzą normy z innych działów:

- EN-1993-5. Grodzie, pale, ścianki szczelne.

Normy europejskie nie podjęły zupełnie problemu klasyfikacji gruntów, które to normy dla gruntów i skał ma przygotować komisja ISO (International Standard Organization). Wyraźną zmianę w stosunku do dotychczas obowiązującej praktyki jest wprowadzenie w Polsce kategorii geotechnicznych. Kategorię geotechniczną obiektu budowlanego ustala się w zależności od typu warunków gruntowych oraz czynników konstrukcyjnych, ekonomicznych i środowiskowych.

Kategorię geotechniczną obiektu określa projektant obiektu w uzgodnieniu z osobą upoważnioną na podstawie odrębnych przepisów do ustalania geotechnicznych warunków posadowienia obiektu budowlanego. Różne części projektu mogą wymagać opracowania ich w różnych kategoriach geotechnicznych.

Kategorie geotechniczne wprowadzone do polskiego systemu prawnego i normalizacyjnego Rozporządzeniem Ministra Spraw Wewnętrznych i Administracji z dnia 24 września 1998 r. (Dz. U. nr 126 poz. 839). Kategorie jeszcze nie weszły do codziennej praktyki geotechnicznej (norma PN/B 02479).
Kategorie geotechniczne

Kategoria I. Obejmuje ona proste konstrukcje w niewielkich obiektach budowlanych i prostych warunkach gruntowych, w których wystarcza jakościowe określenie właściwości gruntów. Badania w kategorii I można stosować jedynie przy wstępnie rozpoznanych warunkach gruntowych, niewielkich obiektach i gdy zagrożenie życia i mienia jest małe. Stosowanie kategorii I jest możliwe tylko w przypadkach zwykłych konstrukcji, gdy występują proste warunki gruntowe, przy czym należy uwzględnić doświadczenia uzyskane z obserwacji sąsiednich budowli.

Przykłady konstrukcji, które mogą być zaliczone do kategorii I:
— jedno- lub dwukondygnacyjne budynki o prostej konstrukcji i budynki rolnicze przy maksymalnym obciążeniu obliczeniowym na słupek równym 250 kN, a na ściany 100 kN/m na fundamentach bezpośrednich, palowych lub na studniach;
— ściany oporowe i zabezpieczenia wykopów, gdy różnica poziomów nie przekracza 2 m;
— płytkie wykopy powyżej zwierciadła wody i niewielkie nasypy do wysokości 3 m.

Kategoria II. Obejmuje ona konstrukcje i fundamenty nie podlegające szczególnemu zagrożeniu, w prostych lub złożonych warunkach gruntowych, przy mało skomplikowanych przypadkach obciążenia. Konstrukcje te są przeważnie projektowane i wykonywane z zastosowaniem powszechnie stosowanych metod.

Przykłady konstrukcji, które mogą być zaliczone do kategorii II:
— powszechnie spotykane konstrukcje posadowione bezpośrednio, a także na fundamentach płytkowych lub palowych,
— ściany oporowe wyższe niż w kategorii I lub inne konstrukcje oporowe utrzymujące grunt lub wodę,
— przyczółki i filary mostowe oraz nabrzeża,
— nasypy i budowle ziemne poza kategorią I,
— nawierzchnie lotnisk o sztywnej i podatnej konstrukcji,
— kotwy gruntowe i inne konstrukcje kotwiące,
— tunele w twardych, niespękanych skałach, nie wymagające pełnej szczelności lub spełnienia innych specjalnych warunków.

Kategoria III. Do tej kategorii należy zaliczyć obiekty bardzo duże lub rzadkie, wrażliwe na osiadania, konstrukcje w skomplikowanych warunkach gruntowych lub konstrukcje obarczone nadzwyczajnym ryzykiem nawet w prostych lub złożonych warunkach, obiekty na obszarach działania czynnych procesów geologicznych, czynnych szkód górniczych, konstrukcje zagrzewające środowisko.

Konstrukcje, które mogą być zaliczone do kategorii III nawet w przypadku prostych warunków gruntowych:
— budowle o szczególnie dużych obciążeniach, budynki wysokie,
— budynki z wielokondygnacyjnymi podziemiiami,
— zapory i inne konstrukcje działające w warunkach dużych różnic ciśnienia wody,
— przejścia komunikacyjne pod drogami o dużym natężeniu ruchu,
— duże mosty, wiadukty, estakady,
— fundamenty maszyn o znacznym obciążeniu dynamicznym,
— skomplikowane konstrukcje nabrzeżne,
— obiekty zakładów stosujących niebezpieczne substancje chemiczne,
— głębokie wykopy wykonywane w pobliżu budowli,
— konstrukcje osłonowe reaktorów jądrowych itp.,
tunel w skałach miękkich i spękanych ocieplane wodami naporowymi lub wymagające szczelności.
Obiekt budowlany należy projektować zgodnie z zasadami zapewniającymi:
1) bezpieczeństwo ludzi i mienia,
2) ochronę środowiska,
3) ochronę zdrowia i życia ludzi przed skutkami stosowanych procesów technologicznych w obiektach,
4) ochronę dóbr kultury,
5) warunki użytkowe zgodnie z przeznaczeniem obiektu, a w szczególności w zakresie oświetlenia, zaopatrzenia w wodę, ogrzewania, wentylacji, łączności, ochrony przeciwpożarowej oraz usuwania ścieków i odpadów,
6) racjonalne wykorzystanie energii,
7) warunki użytkowe zgodne z przeznaczeniem obiektu, a w szczególności w zakresie oświetlenia, zaopatrzenia w wodę, ogrzewania, wentylacji, łączności, ochrony przeciwpożarowej oraz usuwania ścieków i odpadów,
8) ochronę ludności zgodnie z wymaganiami obrony cywilnej, określonymi odrębnie przepisami,
9) ochronę uzasadnionych interesów osób trzecich.
Należy jeszcze zwrócić uwagę na następujące terminy w EN-1997-1 i EN-1997-3, które dotychczas w naszych normach nie były stosowane, a są istotne z punktu widzenia metod geologiczno-inżynierskich. Są to:
— doświadczenie porównywalne — udokumentowane lub w inny sposób jednoznacznie określone informacje dotyczące podłoża gruntowego, którego zachowanie i właściwości były wykorzystywane w projektowaniu podobnych konstrukcji,
— wartości wyprowadzone. Wszystkie parametry geotechniczne otrzymane w wyniku korelacji nazywać będziemy wartościami wyprowadzanymi parametrami geotechnicznymi. Pojęcie wartości wyprowadzonych wprowadzono do EN-1997-1, aby służyły określaniu wartości charakterystycznych. Przyjęto następującą koncepcję wartości wyprowadzonych. Przykładowo załóżmy, że mamy jednorodną warstwę gruntu. Stosujemy dwa rodzaje badań polowych, np. pięć pomiarów sondą CPT i pięć pomiarów presjometerem (PMT). Przyjmijmy, że wykonano pięć badań laboratoryjnych (LAB) w celu określenia np. wytrzymałości na ściance przy szybkim ściance. Na podstawie 5 wartości q_c z sondowania sondą CPT i pięciu wartości P_{LM} z badania presjometrycznego uzyskano zbiory wartości, które można skorelować z wytrzymałością na ściance (c_u) bez odpływu:
Określone z tych trzech zbiorów wartości służą do wyznaczenia wartości charakterystycz-
nych przyjmowanych w projektowaniu, w tym przypadku \(c_p \). Przyjęta wartość \(c_u \) nie musi być
zgodna z dokładnym wynikiem któregoś z badań. Terminy: doświadczenia porównywalne i war-
tości wyprodukowane (inne języki nazywane) stosowaliśmy i stosujemy, bo czym jest metoda B
z normy PN–81/B–03020 oparta na uogólnieniu wartości wyników badań z dużych zbiorów z te-
renu Polski. Wartości wyprodukowane to nic innego jak korelacje między danymi określonymi w
terenie (np. liczba uderzeń sondy na 10 cm zagłębiania — \(N_{10} \) a stopniem zagęszczenia \(I_D \) czy
innymi cechami, oraz wynikami badań laboratoryjnych. W Polsce wykonuje się zazwyczaj zbyt
mało badań, często nie wykonuje się wcale badań laboratoryjnych. Nie ma natomiast potrzeby
ani obowiązku podawać jako parametr dokładnie tych wartości, które uzyskano z badań (jak to
często dzieje się u nas).

1.3. Wytyczne, instrukcje, materiały archiwalne

Materiałami archiwalnymi i publikacjami są:

a) karty otworów wiertniczych (geologiczne, geologiczno-inżynierskie, hydrogeologiczne,
surowcowe i inne),

b) dokumentacje geologiczne (geologiczno-inżynierskie, hydrogeologiczne, surowcowe),

c) techniczne badania podłoża gruntowego, dokumentacje geotechniczne, opinie, ekspertyzy
dotyczące przedmiotu badań,

d) mapy geologiczne (geologiczne, hydrogeologiczne, geologiczno-inżynierskie, surowco-
we, geomorfologiczne, szoologiczne),

e) publikacje naukowe,

f) mapy topograficzne.

Na podstawie analizy materiałów archiwalnych należy:

— ustalić główne problemy geologiczno-inżynierskie decydujące o warunkach budowlanych,

— określić stopień złożoności budowy geologicznej i zakres zmienności cech fizyczno-
mechanicznych oraz ich zgodność z przeciętnymi wartościami podanymi w normach budowlanych
lub w publikacjach,

— wyznaczyć obszary działania procesów geodynamicznych,

— ustalić problemy mogące mieć istotne znaczenie przy budowie rozpatrywanej inwestycji,

— wstępnie ustalić z projektantem obiektu kategorię geotechniczną inwestycji lub jej części,

— określić ewentualny wpływ projektowanych badań i robót na środowisko.

W przypadku tworzenia bazy danych materiały archiwalne należy włączyć w przyjętym
układzie kartograficznym (preferuje się układ współrzędnych prostokątnych płaskich 1942):

a. Dane dotyczące wierceń obejmują: współrzędne \(x, y, z \), numer otworu, miejscowość,

— znaczenie otworu, głębokość otworu, głębokość wody nawiercąną i ustaloną, następowe
warstw, genęzę i uproszczoną stratygrafię, strefę zafiltrowania, nazwę surowca, miejsce prze-
chowywania dokumentacji i rok wykonania (analogicznie należy włączyć do bazy także otwory
znajdujące się w dokumentacjach geologicznych i w publikacjach, dla których można określić
współrzędne),

b. Dane dotyczące dokumentacji geologicznych i geotechnicznych obejmują: nazwę doku-
mentacji, wykonawcę i autora, rok wykonania, ewentualne uwagi o liczbie i głębokości otworów
i przeprowadzonych badaniach, miejsce przechowywania i numer.

c. Dane dotyczące publikacji, które należy ująć zgodnie z zasadami bibliografii.
2. DEFINICJE

2.1. Obiekt budowlany

Przez obiekt budowlany należy rozumieć: budynek wraz z instalacjami i urządzeniami technicznymi; budowlę stanowiącą całość techniczno-użytkową wraz z instalacjami i urządzeniami; obiekt małej architektury.

1. Budynek to taki obiekt budowlany, który jest trwale związany z gruntem, wydzielony z przestrzeni przegrodami budowlanymi oraz mający fundamenty i dach.

2. Budowla to każdy obiekt budowlany nie będący budynkiem lub obiektem małej architektury, jak: lotniska, drogi, linie kolejowe, mosty, estakady, tunele, sieci techniczne, wodne stojące maszyny antenowe, wolno stojące trwale związane z gruntem urządzenia reklamowe, budowle ziemne, obronne (fortyfikacje), ochronne, hydrotechniczne, zbiorniki, pompy, maszyny, urządzenia instalacyjne, urządzenia techniczne, oczyszczalnie ścieków, składowiska odpadów, stacje uzdatniania wody, konstrukcje oporowe, nadziemne i podziemne przejścia dla pieszych, sieci uzbrojenia terenu, budowle sportowe, cmentarze, pomniki, a także części budowlane urządzeń technicznych (kotłów, pieców przemysłowych i innych urządzeń) oraz fundamenty pod maszyny i urządzenia, jako odrębne pod względem technicznym części przedmiotów składających się na całość użytkową.

3. Obiekt małej architektury to niewielkie obiekty, w szczególności:
 — kapliczki, krzyże przydrożne, figury,
 — posagi, wodotryski i inne obiekty architektury ogrodowej,
 — użytkowe służące rekreacji codzienniej i utrzymaniu porządku, jak: piaskownice, huśtawki, obrzeża.

4. Tymczasowy obiekt budowlany to obiekt przeznaczony do czasowego użytkowania w okresie krótszym od jego trwalości technicznej, przewidziany do przeniesienia w inne miejsce lub rozbiórki, a także obiekt budowlany nie połączony trwale z gruntem, jak: strzelnice, kioski uliczne, pawilony sprzedażowe, przykrycia namiotowe i powłoki pneumatyczne, urządzenia rozrywkowe, barakowozy, obiekty kontenerowe.

5. Teren budowy to przestrzeń, w której są prowadzone roboty budowlane wraz z przestrzenią zajmowaną przez urządzenia zaplecza budowy.

2.2. Fundamenty

Ławy pod ściany konstrukcyjne. Typowym fundamentem w budynkach jest ława — gruba płyta wspornikowa, biegnąca nieprzerwanie wzduże muru. W zależności od obciążenia i jakości gruntu ławy mogą być wykonane jako betonowe lub żelbetowe.

Ławy betonowe i żelbetowe pod murami konstrukcyjnymi są niekiedy zbrojone również czterema prętami podłużnymi średnicy 10–20 mm w celu zabezpieczenia przed poprzecznym pękaniem, wywołanym nierównomiernym osiadaniami, nadmierną podatnością gruntu lub innymi przyczynami. Wysokość ławy nie powinna być mniejsza niż 30 cm.

Stopy pojedyncze pod słupy. Pojedyncze styki stosuje się głównie w miejscu skupionego obciążenia, a więc pod słupami, ponadto w tych przypadkach, gdy zastosowanie ław zarówno
z uwagi na głębokość posadowienia, jak i wymaganą powierzchnię staje się nieekonomiczne lub niemożliwe.

Fundamenty rusztowe. W zależności od układu konstrukcyjnego podpór, lawy można umieszać podłużnie lub poprzecznie. Układ zbrojonych law krzyżujących się tworzy ruszt fundamentowy.

Fundamenty płytowe. Konstrukcja ta ma tę zaletę, że obciążenie rozkłada się na znaczną powierzchnię, a ponadto przy gruntach o niejednolitej podatności fundament płytowy zmniejsza ujemne skutki nierównomiernej osiadania. Fundamenty płytowe stosuje się zwykle na bardzo słabych i niejednorodnych gruntach i wykonuje się z żelbetu. W zależności od konstrukcji podpór i warunków miejscowych fundament płytowy może być wykonany jako płyta o stałej wysokości, jako płyta żebra.

Fundamenty skrzyniowe. Konstrukcję żelbetowego fundamentu skrzyniowego stanowią dwie płyty poziome — podstawa i przykrycie, związane ze sobą monolitycznie ścianami podłużnymi i poprzecznymi, usytuowanymi zgodnie z siatką podpór konstrukcji górnej. W ten sposób przecięcia pionowych ścian stanowią podpory dla słupów. Fundamenty skrzyniowe znalazły zastosowanie głównie w budynkach wysokich, przekazujących bardzo duże i nierównomiernie obciążenie na grunt.

Rozwój techniki fundamentowania w ostatnim 20-leciu doprowadził do wytworzenia nowych metod wykonywania fundamentów głębokich. Są to:

Pale wiercone. Mają one średnicę 0,3–3 m i długość do kilkunastu, a nawet kilkudziesięciu metrów, o różnych kształtach konstrukcji z nich wytworzonych: pojedynczych kołowych i zespołowych prostokątnych, owalnych (baret), krzywych o polu przekroju do 10 m² (te ostatnie to zespoły otworów połączone w odpowiednią konstrukcję). Pale są wiercone z rurowaniem lub pod osłoną zawiesiny, a tzw. pale C.F.A. są też formowane świdrem ciągłym (spiralnym).

Ściany szczelinowe. Są to ściany formowane w gruncie, grubości 30–120 cm, długości kilkunastu do kilkudziesięciu (np. 50) metrów. Ściany formuje się różnym sprzętem do głębienia w ograniczających ściankach prowadzących, przy utrzymywaniu ścian wykopu zawiesiną betonową często z dodatkiem polimerów lub dodatków twardejących. Ściany szczelinowe służą tylko do utrzymywania ścian wykopów lub są jednocześnie ścianami fundamentowymi. W trakcie wykonywania wykopów i odsłaniaanja ścian szczelinowych należy zapewnić im właściwe rozparcie. Uzyskuje się to stosując rozporzy lub kotwie gruntowe.

Pale przemieszczalne (ang. **jet grouting**). Są wykonywane w gruncie bez wiercenia i wydobywania gruntu. Są to pale prefabrykowane lub formowane w gruncie, zagłębiane w grunt przez wbijanie, wwirowywanie, wełkianie, wkręcanie lub kombinację tych metod. Materiały pali to stal, żeliwo, beton, drewno, różne iniekt (zastrzyki) zagęszczające, rozrywające, nie przemieszczające ośrodka filtracyjnego, wypełniające szczeliny. Materiały do zastrzyków to roztwory i zaprawy, cement, spoiwa hydrauliczne, materiały ilowe, piasek, wypełniance, chemikalia.

Iniekcja strumieniowa (ang. **jet grouting**). Jest to działanie obejmujące odpajanie gruntu lub słabej skały oraz jego mieszaninę i częściową wymianę na czynnik wiążący. Elementy
konstrukcyjne, które można wykonywać tę metodą to: pale, ściany, przegrody, płyty sklepie-
nia, masywne bloki. Są systemy jednomediowe, dwumediowe i trójmediowe (powietrzny
i wodny). Metodę stosuje się do wzmocnienia gruntu, wykonywania przesłon przeciwfiltacyj-
nych i innych.

Ścianki szczelne. Jest to znana od dawna technologia wykonywania ścianek stalowych, żel-
betowych, drewnianych, łączonych na zamki lub nie, zezwalającą na odciecie dopływu wód
gruntowych do wykopu.

Oprócz wymienionych stosowane są ciągle znane od dawna techniki fundamentowania
głębokiego: pale, studnie, kesony.

Fundamenty głębokie. Fundamenty głębokie stosuje się w przypadku, gdy:

a) nośny grunt znajduje się w głębszych warstwach podłoża,
b) zachodzi potrzeba posadowienia budowli głębiej ze względu na kondygnacje podziemne,
c) wykonanie fundamentów w płytkich wykopach otwartych jest niemożliwe lub utrudnione
ze względu na wysoki poziom wody gruntowej.

Przy posadowieniu głębokim wybór rodzaju fundamentu zależy od warunków geologicz-
nych i możliwości techniczno-ekonomicznych. W przypadku a) i c) zwykle stosuje się posado-
wie sztuczne za pomocą różnego systemu pali lub studni.

Posadowienie na palach jest znane od czasów najdawniejszych. Pod względem pracy sta-
tycznej można wyodrębnić tu dwa przypadki:

a. Pale przechodzą przez słabe warstwy i opierają się na nośnym gruncie. W tym przypadku
pracują one podobnie jak słupy, przy czym nacisk jest tu przenoszony nie tylko przez podstawę,
lecz również przez boczny opór powierzchni trzonu pala.

b. Pale nie mają oparcia w warstwie o wystarczającej nośności, ale przechodząc przez war-
stwy słabe zagęszczają je i pracują z podłożem jako zespolona całość. Tego rodzaju pale nazy-
wają się zawieszonymi, a ich długość musi być większa lub co najmniej równa szerokości
podstawy fundamentu.

3. PROJEKTOWANIE PRAC

Projektowanie prac geologiczno-inżynierskich obejmuje:
— określenie celu prac,
— dokonanie analizy materiałów archiwalnych i literatury,
— dokonanie wstępnej interpretacji zdjęć lotniczych i satelitarnych w sposób i w przypad-
kach wymienionych w rozdziale B.3,
— dokonanie przeglądu terenu,
— opracowanie projektu prac geologicznych.

4. CEL PRAC GEOLOGICZNYCH

Cel prac geologicznych i wynikający zakres badań dla określonej inwestycji zależy od:
— wymagań techniczno-budowlanych,
— obecnego stopnia rozpoznania geologicznego podłoża budowlanego,
<table>
<thead>
<tr>
<th>I. Prace projektowe i przygotowawcze</th>
<th>Projektowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Projektowanie</td>
<td>1. Określenie celu badań</td>
</tr>
<tr>
<td></td>
<td>2. Analiza materiałów archiwalnych i literatury</td>
</tr>
<tr>
<td></td>
<td>3. Analiza zdjęć lotniczych i satelitarnych</td>
</tr>
<tr>
<td></td>
<td>4. Przegląd terenu</td>
</tr>
<tr>
<td></td>
<td>5. Projekt prac geologicznych</td>
</tr>
<tr>
<td></td>
<td>6. Określenie zakresu badań w celu oceny oddziaływania na środowisko (OOS)</td>
</tr>
<tr>
<td>b. Przygotowanie sprzętu do badań terenowych</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Prace terenowe</th>
<th>Dokumentowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pomiarowe</td>
<td>1. Geodezyjne i fotogrametryczne</td>
</tr>
<tr>
<td>b. Geologiczne</td>
<td>1. Kartowanie geologiczno-inżynierskie</td>
</tr>
<tr>
<td></td>
<td>2. Profilowanie wyrobisk</td>
</tr>
<tr>
<td></td>
<td>3. Nadzór, dozór</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Robocie geologiczne</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Górnicze</td>
<td>1. Powierzchniowe</td>
</tr>
<tr>
<td></td>
<td>2. Podziemne</td>
</tr>
<tr>
<td>1. Powierzchniowe</td>
<td>{ szybki</td>
</tr>
<tr>
<td>2. Podziemne</td>
<td>{ szyby</td>
</tr>
<tr>
<td>b. Wiernicze</td>
<td>1. Ręczne i mechaniczne</td>
</tr>
<tr>
<td></td>
<td>2. Sondy nóżniowe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Badania poleowe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Geofizyczne</td>
<td>1. Sejsmiczne</td>
</tr>
<tr>
<td></td>
<td>2. Geoelektryczne</td>
</tr>
<tr>
<td></td>
<td>3. Inne metody geofizyczne</td>
</tr>
<tr>
<td>b. Hydrogeologiczne</td>
<td>1. Badanie współczynnika filtracji</td>
</tr>
<tr>
<td></td>
<td>2. Obserwacje wskaźników zawierciał wody</td>
</tr>
<tr>
<td></td>
<td>3. Pobieranie próbek wody i powietrza glebowego</td>
</tr>
<tr>
<td>c. Geologicalno- -inżynierskie</td>
<td>1. Badania makroskopowe</td>
</tr>
<tr>
<td></td>
<td>2. Pobieranie próbek</td>
</tr>
<tr>
<td></td>
<td>3. Sonadowania dynamiczne i statyczne</td>
</tr>
<tr>
<td></td>
<td>4. Ścinanie obrotowe</td>
</tr>
<tr>
<td></td>
<td>5. Badania presjometryczne</td>
</tr>
<tr>
<td></td>
<td>6. Probie obciążenia płyta</td>
</tr>
<tr>
<td></td>
<td>7. Badania dylametryczne</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. Badania laboratoryjne</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Badania podłoża</td>
<td>1. Gruntów</td>
</tr>
<tr>
<td></td>
<td>2. Skal</td>
</tr>
<tr>
<td></td>
<td>3. Wody</td>
</tr>
<tr>
<td>b. Badania materiałów budowlanych</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI. Prace dokumentacyjne</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Tekst</td>
<td></td>
</tr>
<tr>
<td>b. Przekroje</td>
<td></td>
</tr>
<tr>
<td>c. Mapy</td>
<td></td>
</tr>
<tr>
<td>d. Tabele, zestawienia</td>
<td></td>
</tr>
<tr>
<td>e. Obliczenia</td>
<td></td>
</tr>
</tbody>
</table>
— stopnia złożoności podłoża,
— kategorii geotechnicznej,
— spodziewanego zagrożenia inwestycji dla otoczenia.

Wymagania techniczno-budowlane powinny zawierać:
— lokalizację inwestycji, położenie administracyjne,
— dane o właścicieli i użytkowniku terenu,
— posiadane informacje o podłożu lub znane zlecającemu,
— przewidywaną charakterystykę obiektów, a w szczególności rodzaje fundamentów, głębokość posadowienia itp.,
— dane o wrażliwości konstrukcji na nierównomierne osiadanie,
— dane o istniejącym uzbrojeniu i o projektowanych obiektach podziemnych,
— wymagania projektanta dotyczące rozpoznania podłoża i terenu budowlanego,
— zapotrzebowanie inwestycji na lokalne materiały budowlane.

Projekt prac geologicznych określa cele zamierzonych prac, rodzaje i zakresy robót oraz badań niezbędnych do rozwiązania zadania, rodzaj dokumentacji, harmonogram prac oraz przedsięwzięcia konieczne ze względu na ochronę środowiska.

Dokumentacja geologiczno-inżynierska jest zbiorem informacji o:

a) budowie geologicznej,

b) warunkach hydrogeologicznych,

c) zjawiskach i procesach geodynamicznych,

d) właściwościach fizyczno-mechanicznych gruntu, niezbędnych do planowania, projektowania, budowy i monitoringu inwestycji budowlanych,

e) wpływie inwestycji na środowisko.

Schemat (tab. 1) przedstawia większość prac i badań stosowanych przy projektowaniu i dokumentowaniu geologiczno-inżynierskim.

5. STOPIEŃ ZŁOŻONOŚCI WARUNKÓW GEOLOGICZNO-INŻYNIERSKICH

6. CZĘŚĆ TEKSTOWA

Projekt prac geologiczno-inżynierskich powinien zawierać:

a. Określenie celu projektowanych prac geologicznych z wykorzystaniem wymagań techniczno-budowlanych zgodnie z rozdziałem A.4.

b. Lokalizację terenu badań na mapie lub planie w ogólne stosowany układzie współrzędnych, najlepiej 1942.

c. Analizę dotychczas wykonanych badań zlokalizowanych na mapie dokumentacyjnej.

d. Wyniki wstępnej analizy zdjęć lotniczych i satelitarnych zgodnie z rozdziałami B.3.1 i B.3.2.

e. Wyniki i wnioski z przeprowadzonego przeglądu terenu.

f. Charakterystykę morfologiczną terenu badań.

<table>
<thead>
<tr>
<th>Stopień złożoności podłoża</th>
<th>Na potrzeby kartowania geologiczno-inżynierskiego</th>
<th>Na potrzeby programowania badań podłoża budowlę drogowy i ustalenia kategorii geotechnicznych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proste</td>
<td>Tereny płaskie lub pośladowane; warstwy gruntu poziome lub niemal pochylone, wyraźne; stanie i znane poziomy litostatgraficzne; jeden poziom wody podziemnej o ustabilizowanym składzie; brak objawów procesów geodynamicznych lub procesy o małej intensywności</td>
<td>Poziome warstwy gruntów jednorodnych, dobrze poznane, w podłożu obiekty, gdy z dostępnych badań wynika, że warstwę nieispólne są co najmniej średnio zagęszczone, a spoiste co najmniej plastyczne. Brak warstw o małej nodności lub zabarwia geodynamicznych (glaciotektonika, zawy, kras i.p.), woda gruntowa jest poniżej poziomu posadowienia (dua wykopów) lub mogą ją łatwo obniżyć</td>
</tr>
<tr>
<td>Złożone</td>
<td>Tereny pogłębione, formy erozyjne, warstwy pochylone, sfalowane, słabo poznane stratygrafia z niewyraźnymi poziomami przewodnimi, zmiana facji; jeden do trzech poziomów wododolnych o równej obsadzone składzie chemicznych, wyraźne formy po ustawionych procesach geodynamicznych</td>
<td>Poniżej poziomu posadowienia obiekty występują warstwy mineralne zróżnicowane co do rodzaju, większości i stanu; woda gruntowa występuje okresowo lub stale powyżej poziomu posadowienia, a odwodnienie jest trudne, przypowierzchniowe warstwy gruntów o małej nodności (organiczne lub spoiste miękkoplastyczne), brak czynnych procesów geodynamicznych</td>
</tr>
<tr>
<td>Skomplikowane</td>
<td>Tereny podgórskie i górskie, doliny rzeč, złożona budowa geologiczna płasko-luśkowa, złożona budowa geologiczna płasko-luśkowa; na pozostałości terenach: duża zmienność litologiczna, kilka poziomów wododolnych o równej obsadzone składzie chemicznych (wody krasowe, tereny kopalniane), intensywne procesy geodynamiczne, w tym zaburzenia glaciotektoniczne</td>
<td>Duża zmienność rodzajów, większości i stanu gruntów; występowanie gruntów organicznych, pęczniących lub spoistych miękkoplastycznych, zmiennych rodzajów, w kilku warstwach, obiekty znajduje się na terenie lub w bezpośrednim sąsiedztwie zagrożeń geodynamicznych, szczególnie glaciotektonicznych i osuwiskowych albo na terenach szkód górniczych</td>
</tr>
</tbody>
</table>

Tabela 2

Ocena stopnia złożoności podłoża (Instrukcja..., 1998a)
g. Opis budowy geologicznej (geometria warstw, litogeneza, warunki hydrogeologiczne) i określenie stopnia złożoności podłoża oraz kategorii geotechnicznej zgodnie z rozdziałem A.1.2.

h. Opis działających procesów geodynamicznych.

i. Opis projektowanych robót, prac i badań zgodnie z tabelą 1, z podaniem możliwych wariantów i określeniem:
 — liczby, rodzaju i lokalizacji robót geologicznych wraz z uzasadnieniem,
 — schematyzowanej konstrukcji otworów wiertniczych wraz z podaniem sposobów ich likwidacji,
 — wskazówek dotyczących zamykania poziomów wodonośnych,
 — wyszczególnienia i uzasadnienia zakresu i metod badań terenowych, polowych i laboratoryjnych zgodnie z tabelą 1,
 — schematycznej konstrukcji otworów wiertniczych wraz z podaniem sposobów ich likwidacji,
 — wskazówek dotyczących zamykania poziomów wodonośnych,
 — wyszczególnienia i uzasadnienia zakresu i metod badań terenowych, polowych i laboratoryjnych zgodnie z tabelą 1,
 — sposobu pobierania próbek gruntów, skał i wody,
 — harmonogramu prac (terminy rozpoczęcia, czas trwania i terminy zakończenia robót geologicznych,
 — schematyzowanej konstrukcji otworów wiertniczych wraz z podaniem sposobów ich likwidacji,
 — wskazówek dotyczących zamykania poziomów wodonośnych,
 — wyszczególnienia i uzasadnienia zakresu i metod badań terenowych, polowych i laboratoryjnych zgodnie z tabelą 1,
 — sposobu pobierania próbek gruntów, skał i wody,
 — harmonogramu badań geologiczno-inżynierskich dla dużych inwestycji budowlanych (np. stopnie wodne) powinien być opracowany metodą decydujących ciągów.

j. Określenie formy dokumentacji (dokumentacja geologiczno-inżynierska pełna lub uproszczona).

7. UWAGI ORGANIZACYJNE

Projekt prac geologicznych podpisuje osoba z odpowiednimi uprawnieniami i odpowiedzialna za całość projektowanych prac.

W projekcie prac geologicznych należy przewidzieć badania i obserwacje potrzebne do opracowania oceny oddziaływania na środowisko (OOS) oraz przewidzieć środki niezbędne do wylamowania zagrożeń środowiska, np. dobór odpowiednich metod badawczych, właściwej pory roku do przeprowadzania badań itp.

W przypadku projektowania wykonawstwa robót geologicznych w kilku etapach należy szczegółowo określić rodzaje, zakresy i lokalizację dla pierwszego etapu oraz orientacyjnie dla etapów następnych. Dla kolejnych etapów należy sporządzić aneksy do projektu i uzyskać ich zatwierdzenie. W uzasadnionych przypadkach celowe jest wnioskowanie w projekcie o wydanie przez organ zatwierdzający zezwolenia na korektę zakresu robót.

Projekt prac geologicznych przedstawia w 3. egzemplarzach do zatwierdzenia podmiot finansujący badania geologiczno-inżynierskie. Projekty i dokumentacje wykonywane na obszarze danego województwa zatwierdza wojewoda lub starosta, a wykonywane na terenie więcej niż jednego województwa Minister Środowiska.

Roboty geologiczne na obszarach górniczych i przy głębokości wiercen przekraczającej 30 m podlegają nadzorowi i kontroli organów państwowego nadzoru górniczego. W tym przypadku wymagany jest tzw. plan ruchu.

Wykonawca prac geologicznych jest zobowiązany do zgłoszenia na piśmie wojewódzie lub staroście i zarządowi gminy zamiaru przystąpienia do prac co najmniej na dwa tygodnie przed ich rozpoczęciem. W zgłoszeniu należy podać terminy rozpoczęcia i zakończenia robót, ich rodzaj i podstawowe dane oraz osoby sprawujące dozór i kierownictwo robót.
Dokumentowanie geologiczno-inżynierskie obejmuje następujące czynności:
— prace terenowe,
— prace geologiczne i górnicze,
— analizę zdjęć lotniczych i satelitarnych,
— kartowanie geologiczno-inżynierskie,
— badania polowe,
— badania laboratoryjne,
— badania hydrogeologiczne,
— badania w celu oceny oddziaływania na środowisko,
— prace dokumentacyjno-zestawcze.

1. PRACE POMIAROWE GEODEZYJNE I FOTOGRAMETRYCZNE

Podstawowe punkty dokumentacyjne, np. wiercenia, piezometry, sondowania, miejsca prób-nych obciążeń, lokalizuje się na podkładach topograficznych (mapa topograficzna, cyfrowa ortofotomapa itp.) metodami geodezyjnymi tradycyjnymi lub GPS (ang. Global Positioning System).

Punkty obserwacyjne podczas kartowania należy lokalizować w stosunku do punktów nawiązań (skrzyżowanie dróg, mosty, budynki, większe drzewa itp.) wyraźnie zaznaczonych na mapie topograficznej lub zdjęciach lotniczych.

Przy lokalizowaniu na mapach topograficznych należy stosować ciągi azymutalno-tanggalowe lub w przypadku dopuszczalnej mniejszej dokładności — ciągi krokówkowe. Ciągi krokówkowe i azymutalno-tanggalowe należy wyrównywać.

Najlepszym podkładem topograficznym przy kartowaniu geologicznym są zdjęcia lotnicze i naziemne, ze względu na aktualność przedstawionej sytuacji topograficznej i dużą liczbę możliwych punktów nawiązań. Ze zdjęć lotniczych wykorzystuje się przede wszystkim stereogramy lub ortofotomapy.

B. ZASADY SPORZĄDZANIA DOKUMENTACJI GEOLOGICZNO-INŻYNIERSKICH
Stereogramy naziemne wykonuje się w celu udokumentowania lokalizacji obiektów geologicznych, np. odkrywek i osuwisk. Zmiany zachodzące w osuwisku dokumentuje się przy zastosowaniu zdjęć naziemnych z paralaksą czasową. Obecnie dostępne są stereoskopowe skanerowe zdjęcia lotnicze i satelitarne, zezwalające na uzyskanie numerycznego modelu terenowego wspomagającego automatyczny proces projektowania i monitorowania obiektów budowlanych.

2. PRACE GEOLOGICZNE

Profilowania w trakcie prac terenowych należy prowadzić dla wszystkich odsłonięć naturalnych i wyrobisk. Wyrobiska wykonuje się zależnie od celów badawczych i warunków geologicznych, jako:
- odkrywki,
- szybiki,
- wykopy,
- wiercenia,
- doły próbowe,
- sondy penetracyjne,
- sondy rdzeniowe.

Wyrobiska badawcza i inne miejsca badań należy wytyczać w terenie metodami geodezyjnymi, zgodnie z ich lokalizacją określoną w projekcie prac geologicznych, a w przypadku braku na tym terenie osnowy geodezyjnej na podstawie obiektów terenowych uwidocznionych na planie. Do określania współrzędnych wyrobisk można wykorzystać urządzenia lokalizacji satelitarnej (GPS). Wyrobiska należy wytyczać z dokładnością do 1,0 m, sporządzając odpowiedni szkic terenowy. Niwelację należy objąć wszystkie punkty terenu wskazane w projekcie prac geologicznych lub charakterystyczne punkty terenowe. Niwelację należy wiązać do co najmniej dwóch reperów o znanej wysokości. W przypadku braku reperów państwowych w odległości do 2 km, niwelację można nawiązać do punktu stałego w terenie przyjętego jako reper zastępczy, lokalizując go na podkładzie.

Podstawową metodą profilowania wyrobisk są badania makroskopowe skał i gruntów. Wykonuje się je:
- w warunkach polowych, gdzie na ich podstawie wydziela się warstwy i określa profil wyrobiska,
- w laboratorium, jako ponowne badanie wszystkich dostarczonych próbek w celu wytypo- wania próbek do szczegółowych badań.

Dodatkową, godną polecenia dokumentację warunków geologiczno-inżynierskich podłoża mogą stanowić zdjęcia fotograficzne ścian wyrobisk lub próbek i rdzeni pobranych z otworów wiertniczych.

2.1. Odsłonięcia naturalne, odkrywki, szybiki i wykopy

Odsłonięcie naturalne, odkrywki, szybiki i wykopy, w tym wykopy przy fundamentach istniejących budynków, wykorzystuje się do przeprowadzenia bezpośrednich obserwacji i pomia-
rów geologicznych, poboru próbek oraz przeprowadzenia badań specjalistycznych, np. próbnych obcięć gruntu. Szczególnie przydatne są w przypadku:
- płytkiego występowania skał litych,
- rozpoznania profilu wietrzeniowego,
- kąta upadu i biegu warstw skalnych,
- stopnia zwietrzenia i spekania materiału skalnego,
- do rozpoznania niektórych gruntów antropogenicznych.

Profilowaniu podlegają odpowiednio przygotowane i oczyszczone źciany wyrobisk. Profilowanie należy nie jedną źcianę, ale kilka i dno wyrobiska, tak aby uzyskać obraz przestrzennej zmienności utworów. Najczęściej stosuje się profilowanie trzech źcian (czolowej i dwóch prostopadłych do niej) oraz dna. Profilowane źciany należy orientować w stosunku do północy i ewentualnie do obiektu budowlanego. Profil takiego wyrobiska powinien stanowić przestrzenne rozwinięcie profilów i rysunków poszczególnych źcian i dna. Profile wyrobiska, jako dokładne rysunki źcian, należy wykonywać w skali 1:50, 1:20, a nawet 1:10 zależnie od potrzeb, a w przypadku odsłonięć źcian naturalnych w skali 1:200 i mniejszej.

Z doświadczeń wynika, że projektując prace geologiczne w terenie często nie wykorzystuje się możliwości uzyskania bogatych danych otrzymanych z profilowania źcian odsłonięć naturalnych i wykopów budowlanych. Wykorzystanie istniejących odsłonić, oczywiście po oczyszczeniu źcian, często daje większe możliwości poznawcze przy dość małych kosztach w stosunku do innych wyrobisk badawczych.

Wykonując szybiki w obudowie należy tak ją wykonać, aby było możliwe swobodne profilowanie ich źcian.

Odkrywki fundamentów są inną formą wykopów. Są wykonywane w celu ustalenia głębokości i sposobu posadowienia istniejących budynków oraz wykształcenia podłoża bezpośrednio pod fundamentem. Odkrywki fundamentów wykonuje się najczęściej w celu dokumentowania warunków geologiczno-inżynierskich:
- budynków plomb,
- budynków dobudowywanych lub nadbudowywanych,
- terenów, na których istnieje możliwość występowania starych fundamentów.
Fundamenty można odsłaniać od strony zewnętrznej budynku, jak również od strony piwnic. Celem wykonywania wyrobisk, co należy odzworować w trakcie profilowania, jest:
- stwierdzenie szczegółów budowy geologicznej, a przede wszystkim litologii i zmienności fazowej, biegu i upadu warstw skalnych,
- określenie zaangażowania tektonicznego skał,
- jakościowe i ilościowe określenie szczelinowatości skał,
- określenie profilu wietrzeniowego skał,
- ustalenie przebiegu stref poślizgu na obszarach osuwiskowych i glaiektikonicznych,
- określenie w wyniku badań in situ właściwości fizycznych i mechanicznych skał i gruntów,
- ustalenie przejawów wód gruntowych,
- pobranie próbek skał i gruntów do badań laboratoryjnych i zaznaczenie na rysunkach źcian miejsc ich poboru.
2.2. Wiercenia badawcze

Wiercenia umożliwiają:
— pobieranie próbek gruntów, na podstawie których odtwarza się profil geologiczny i ustala cechy fizyczno-mechaniczne gruntów,
— przeprowadzenie obserwacji hydrogeologicznych oraz pobranie próbek wód,
— przeprowadzenie innych badań, np. geofizycznych, próbnych obciążeń.

W trakcie wiercen należy co 1 m i po każdej zmianie warstw przeprowadzać pełne badanie makroskopowe urobku według PN-88/B-04481. Wyniki badań makroskopowych jako podstawowe oraz inne badania i obserwacje służą do określenia profilu otworu wiertniczego przedstawionego w formie metryki lub karty dokumentacyjnej, gdzie przede wszystkim, poza profilem geologicznym słupkowym, przelotem warstw, opisem litologicznym, informacjami dotyczącymi genezy i stratygrafii, podaje się dane odnośnie do warunków hydrogeologicznych, cech fizyczno-mechanicznych gruntów, charakteru i głębokości pobrania próbek, przebiegu wiercenia.

Wiercenia są wykonywane różnym sprzętem. Ważny jest taki dobór sprzętu, aby nie wystąpiły niekorzystne zmiany w środowisku w wyniku wykonania otworów. Wiercenia głębsze od 30 m lub zlokalizowane na terenach górniczych należy wykonywać zgodnie z przepisami prawa górniczego.

2.3. Sondy penetracyjne i rdzeniowe

Sondy penetracyjne — płytkie otwory małośrednicowe wykonywane zwykle do głębokości 4–6 m, wiercone ręcznie lub mechanicznie jako rurowane i nieorurowane, pozwalają podobnie jak w otworach wiertniczych na:
— rozpoznanie gruntów i ich właściwości w profilu geologicznym,
— pobranie próbek o naturalnym uziarnieniu i wilgotności.

Tak jak w przypadku wiercen dla sond penetracyjnych sporządza się karty dokumentacyjne.

Geologiczna sonda rdzeniowa umożliwia pobór próbek w sposób ciągły lub punktowo z wybranych głębokości. Przy opróbowaniu ciągłym istnieje możliwość opracowania profilu geologicznego oraz, zależnie od potrzeb, charakterystyki geochemicznej, fizycznej i wytrzymałościowej gruntów. Zapis tych danych należy przedstawić w formie metryki lub karty dokumentacyjnej.

2.4. Doły próbne

Doły próbne służą najczęściej do pobierania dużych próbek gruntów. ściany ich powinny być sprofilowane i przedstawione w formie rysunku lub kolorowego zdjęcia fotograficznego ze skalią.
2.5. Nadzór

Prace geologiczne mogą być wykonywane, dozorowane i kierowane tylko przez osoby mające odpowiednie kwalifikacje Prawa geologicznego i górniczego (art. 31 p. 1, Dz. U. nr 27 poz. 96 z 1994 r.), przy czym zgodnie z przepisami sprawowanie dozoru geologicznego dotyczy wykonywania robót geologicznych, z wyjątkiem geofizycznych, lub kierowania w terenie wierceniami do głębokości 30 m poza obszarem górniczym. Wykonywanie badań geologicznych i ich kierowanie stanowią więc podstawowe zadania nadzoru geologicznego.

Na etapie prac przygotowawczych do nadzoru należy:

— uzgodnienie i opiniowanie projektów prac geologicznych w celu wykonania badań geologiczno-inżynierskich przed skierowaniem ich do organu zatwierdzającego,

— przegląd terenu badań,

— określenie użyczenia terenu ze względu na występowanie ewentualnych przeszkód przy lokalizacji wyrobisk badawczych oraz powstanie szkód w wyniku prowadzenia prac geologicznych,

— ocena stanu zachowania istniejących budynków,

— zgłoszenie zamiaru przystąpienia do wykonywania prac geologicznych właściwym jednostkom administracji państwowej lub samorządowej, a w ściśle określonych przypadkach orga- nowi państwowego nadzoru górniczego.

W trakcie prowadzenia badań do nadzoru należy:

— wyznaczenie wyrobisk i ich niwelacja,

— kontrola prowadzonych terenowych badań podłoża,

— przestrzeganie zgodności prowadzonych badań z projektem prac geologicznych w odniesieniu do spotykanych warunków podłoża,

— przestrzeganie zasad ochrony wód podziemnych i likwidacja otworów,

— przestrzeganie zasad pobierania próbek wody i gruntów,

— wykonywanie lub współudział w badaniach specjalistycznych,

— sporządzanie dokumentacji z badań,

— wnioskowanie zmian w projektach prac geologicznych w miarę wynikających potrzeb, w granicach upoważnień zawartych w decyzji zatwierdzającej projekt prac geologicznych, lub wnioskowanie sporządzenia aneksu; dodatkowo w szczególnych przypadkach w trakcie prowadzenia robót fundamentowych również odbiory wykopów.

3. ANALIZA ZDJĘĆ LOTNICZYCH I SATELITARNYCH

3.1. Zdjęcia lotnicze

Analizę zdjęć lotniczych i satelitarnych wykonuje się w pierwszych etapach rozpoznania geologiczno-inżynierskiego dużych inwestycji. Wykorzystanie zdjęć lotniczych i satelitarnych jest celowe w szczególności przy badaniach geologiczno-inżynierskich dolin rzecznych w rejonach projektowanych stopni wodnych, przy badaniach tektonicznych, projektowaniu elektrowni
atomowych, wyborze tras autostrad i dróg ekspresowych, dla górnictwa odkrywkowego na etapie projektowania i monitoringu przebiegu eksploatacji.

Interpretacja geologiczna zdjęć lotniczych i satelitarnych jest szczególnie wskazana w przypadku stosowania komputerowych systemów numeryczno-graficznych, generujących elementy projektu budowlanego i wykorzystujących cyfrową ortofotomapę, numeryczny model terenu oraz cyfrowe widoki perspektywiczne. Obecne możliwości fotogrametrii pozwalają na uzyskanie nawet dowolnej dokładności zdjęć od skali 1:500 począwszy. Skalę zdjęć lotniczych należy dobrać w zależności od żądanej dokładności.

Zdjęcia lotnicze w formie stereogramów powinny być przygotowane do wizji lokalnej. Wszystkie wyniki badań i prac projektowych należy nanieść na cyfrową ortofotomapę, która stanowi najbardziej dokładny i aktualny podkład topograficzny, a odpowiednie programy aplikacyjne zezwalają na projektowanie inżynierskie na podstawie numerycznego modelu terenu (R. Kaczyński, 1995). Do wykonywania podkładów topograficznych i interpretacji tematycznej są obecnie dostępne zdjęcia lotnicze kolorowe (stereogramy), wykonywane w pierwotnej skali około 1:26 000. Dobra jakość tych zdjęć zezwala na opracowanie map o geodezyjnej dokładności 1:5000.

3.2. Zdjęcia satelitarne

Zdjęcia satelitarne zezwalają na opracowanie map topograficznych i tematycznych w dowolnym układzie współrzędnych, z dokładnością od 1:10 000. Obecnie dostępne zdjęcia satelitarne odznaczają się następującymi zdolnościami rozdzielczymi w terenie:

— Landsat — około 30 m (USA),
— SPOT — 10–20 m (Francja),
— Kosmos KVR-1000 — 2–5 m (Rosja).

Zdjęcia satelitarne umożliwiają szybką analizę obecnego sposobu zagospodarowania terenu na większych obszarach, szybką aktualizację podkładów topograficznych oraz ocenę tektoniki obszaru.

Wyróżnia się wstępna i szczegółową fotointerpretację zdjęć lotniczych i satelitarnych:

— Analiza wstępna zezwała na ocenę odkrycia geologicznego terenu przez wyszukiwanie i nanieśenie na podkład topograficzny naturalnych i sztucznych odsłonięć, a także na ocenę dostępności terenu, przede wszystkim ze względu na roślinność, podmokłości i urozmaiconą morfologię. Na tej podstawie ustali się projekt poruszania po terenie przy użyciu odpowiednich środków transportu i pieszo podczas przeglądu terenu, a następnie podczas kartowania geologiczno-inżynierskiego.

— Analiza wstępna ma ograniczyć zakres i skrócić czas trwania badań terenowych, a przy tej samej liczbie punktów dokumentacyjnych zezwała na wyraźne zwiększenie dokładności.

3.3. Fotointerpretacja wstępną

Podczas wstępnej analizy zdjęć stereoskopowych (stereogramów) należy dokonać sklasyfikowania obszaru badań następująco:
a) obszary, na których elementy budowy geologicznej są nieczytelne lub słabo czytelne i które wymagają pełnego udokumentowania terenowego,
b) obszary, na których tylko niektóre elementy budowy geologicznej są czytelne i które będą wymagać ograniczonego udokumentowania granic geologicznych podczas terenowego kartowania,
c) obszary, na których budowa geologiczna jest łatwo czytelna i kartowanie geologiczne ograniczy się do wykonania kontrolnych punktów dokumentacyjnych.

Na podstawie analizy wstępnej zdjęć lotniczych i przeglądu terenu podejmuje się decyzję o celowości wykonania analizy szczegółowej. Dotyczy ona może w zasadzie tylko obszarów z punktów b i c.

3.4. Fotointerpretacja szczegółowa

Szczegółowej analizy zdjęć lotniczych dokonuje się według zasad fotogeologii na podstawie elementów rozpoznawczych, jak: fototon (stopnie szarości), rodzaj szaty roślinnej i kondycja, tekstury i struktury zdjęcia oraz morfologii. Szczegółową interpretację zdjęć lotniczych wykonywuje się z pewnym wyprzedzeniem zezwalającym na ukierunkowaną lokalizację robót geologicznych w terenie, jak również podczas kartowania geologiczno-inżynierskiego. Wszystkie punkty dokumentacyjne, fakty i zjawiska geologiczne zaobserwowane w terenie nanosi się na stereogramy, a następnie na jedną wspólną ortofotomapę analogiczną z ortofotomapą wykorzystywaną w trakcie projektowania inwestycji. Ten sposób zapewnia uzyskanie wymaganej dokładności i ujednolicenie skali i formy z równolegle powstającym projektem inżynierskim.

4. KARTOGRAFIA GEOLOGICZNO-INŻYNIERSKA

4.1. Mapy

Mapy geologiczno-inżynierskie służą do przestrzennego odwzorowania warunków geologiczno-inżynierskich. Mapę zestawia się na podkładzie topograficznym jako tzw. papierową, lub w formie cyfrowej (GIS) na nośnikach magnetycznych. Dokładność map określa się zależnie od liczby punktów badawczych przypadających na 1 km² powierzchni.

Wykonując mapę geologiczno-inżynierską należy jednocześnie gromadzić wszystkie dostępne materiały tworząc bazę danych.

Mapy geologiczno-inżynierskie, zależnie od potrzeb, mogą być opracowywane na różnych głębokościach od powierzchni terenu (np. 1,5 m, 2 m, 3 m itp.). Treść ich może dotyczyć:

— warunków geologiczno-inżynierskich,
— rejonizacji (waloryzacji) warunków geologiczno-inżynierskich,
— problematyki specjalnej, istotnej dla danego terenu (np. spadków terenu, czynnych procesów, dynamiki wód podziemnych, chemizmu gruntów i wód oraz wielu innych zagadnień).

W ujęciu cyfrowym warunki geologiczno-inżynierskie przedstawia się w podziale na moduły informatyczne, zespoły warstw i warstwy tematyczne (Instrukcja..., 1999). Najczęściej
w atlasie map określających warunki geologiczno-inżynierskie, ze względu na ich przeznaczenie, powinny się znaleźć:

1) moduł zarządzania,
2) moduł infrastruktury,
3) moduł geologiczno-inżynierski (a — zespół warstw informacyjnych podłoża budowlano-go, b — zespół warstw informacyjnych hydrogeologicznych),
4) moduł sozologiczny.

Dane zawarte w systemie powinny umożliwiać tworzenie map:
— dokumentacyjnej,
— gleb,
— geomorfologicznej,
— hydrogeologicznej (hydroizohips, hydroizobat, zagrożenia wód itp.),
— surowcowej,
— warunków geologiczno-inżynierskich na określonych głębokościach,
— waloryzacji geologiczno-inżynierskiej terenu,
— przekrojów geologiczno-inżynierskich.

4.2. Przekroje

Przekrój geologiczno-inżynierski ilustruje budowę geologiczną, warunki hydrogeologiczne i układ wydzielonych zespołów geologiczno-inżynierskich według pewnej pionowej płaszczyzny zorientowanej w kierunku wynikającym z określonych potrzeb.

Przekrój może być sporządzony na podstawie wierceń lub mapy, przy czym ten sporządzony na podstawie wierceń jest bardziej szczegółowy, a jego dokładność wzrasta wraz z liczbą wierceń, przez które jest poprowadzony. Na przekrojach geologiczno-inżynierskich należy tak dokonać oznaczenia, aby możliwe było jednocześnie określenie wieku skał, litogenyzy, właściwości, czynnych procesów geologicznych, przekształceń antropogenicznych i innych.

5. BADANIA POLOWE

5.1. Badania makroskopowe gruntów i skał

Badania makroskopowe gruntu obejmują określenie:
— rodzaju,
— stanu,
— wilgotności,
— barwy,
— zawartości CaCO₃.

W badaniach makroskopowych jest wskazane używanie prostych przyrządów, takich jak penetrometr tłoczkiowy (PP) i ścinarka obrotowa (TV).

Oznaczanie rodzaju gruntów według PN-88/B-04481 obejmuje:
— ustalanie spoistości gruntów,
— określenie rodzaju gruntów spoistych,
— określenie rodzaju gruntów niespoistych.

Ustalony rodzaj gruntu (nazwa) powinien być uzupełniony opisem przewarstwień, lamin, domieszek i zanieczyszczeń. W badaniach gruntów kamienistych należy w warunkach in situ określić zawartość spoiwa ilastego, kształt ziarn i sposób ich ułożenia.

W obrębie gruntów spoistych należy w przybliżeniu określić zawartość części organicznych (grunt próchniczy, namul, torf, gyta). Przy opisie torfu (wysoki, niski, przejściowy) należy zwrócić uwagę na stopień jego rozłożenia według skali von Posta.

Stan gruntu spoistego określa się metodą wałęczkowania i formowania kulki: stan zwarty (nie można uformować kulki) i półzwarty (można uformować kulkę, ale wałeczek pęka); stan twardoplasticzny, plastyczny i miękkooplasticzny ustala się (na podstawie rys. 7 w PN-74/B-04-452 i p. 3.3 normy PN-88/B-04481) w zależności od liczby wałęczkowań. Innym sposobem jest badanie penetrometrem PP.

Orientacyjny stopień zagęszczenia gruntu sypkiego w odsłonięciach lub szybkach można określić na podstawie oporu na wciskanie w grunt trzpienia (np. igłą Proctora), w otworach na podstawie oporu świdra, a w wykopach — szpadła.

Wilgotność gruntu określa się jako: mało wilgotny, jeśli ziarna rozsypaną się, a grunt nie zapyla gałąź palców, wilgotny, jeśli zostawia mokry ślad na dłoni lub papierze, mokry, jeśli przy ściskaniu gruntu odsuwa się z niego woda, nawodniony, jeśli woda odsuwa się grawitacyjnie.

Oznaczania barwy gruntu dokonuje się na świeżym przełamie bryły gruntu o wilgotności naturalnej. W opisie kilkuczłonowym przyjmuje podawać początkowo odcień barwy, a jako ostatni człon barwę dominującą (np. jasnozielonoszara).

Oznaczanie zawartości węglanu wapnia dokonuje się kroplami 20-procentowego kwasu solnego, obserwując reakcję gruntu i według danych zawartych w tabeli 4 normy PN-88/B-044-81 ustala się klasę zawartości węglanów.

Badania makroskopowe gruntów spoistych powinny być uzupełnione oznaczeniami, wykonanymi prostymi przyrządami, umożliwiającymi ustalenie w sposób orientacyjny (ale obiektywny) konsystencji i spoistości (wytrzymałości na ściskanie) gruntu.

Penetrometr tłoczkiowy PP jest zaopatrzony w trzpień cylindryczny, który wciska się na oznaczoną głębokość. Przy wciskaniu trzpienia odczytuje się wartość siły (przeliczonej na powierzchnię trzpienia) na podziałce pomiarowej qf (kG/cm² lub · 10² kPa).

Ścinarka obrotowa TV pozwala na wyznaczenie wytrzymałości na ściskanie (spojności) gruntu, ma 3 końcówki skrzypdelkowe, wymieniane w zależności od oporu spoiwości gruntu. Badanie polega na wciśnięciu końcówek na głębokość równą wysokości skrzypdek i ścigu gruntu w wyniku obrotu pokrętła ścinarki z prędkością 1 dzielącej na sekundę. Na tarczy pomiarowej odczytuje się wartość maksymalnego momentu ścignącego Mf (kG·cm) lub bezpośrednio opór ściskania τf (kPa).

W badaniach makroskopowych skała oznacza się:
— rodzaj skały,
— skład mineralny, zawartość CaCO₃,
strukturę i teksturę,
barwę,
twardość,
stopień zwietrzenia i spękania.
Oznaczenia należy prowadzić na powierzchniach niezwietrzałych, stosując zasady badań petrograficznych. Zawartość węglanu wapnia należy określać na podstawie intensywności reakcji skały na działanie 20-procentowego HCl.

Makroskopowo skały można zaliczyć do:
twardych, gdy nie można ich zarysować stalowym rylcem,
miękkich, które łatwo można zarysować rylcem,
bardzo miękkich, które można zarysować paznokciem (gips, iłolupki).

Stopień spękania można ustalić na podstawie pomiarów długości i szerokości szczelin na ścianach wyrobiska. Stopień zwietrzenia można określić na podstawie analizy profilu wietrzeniowego skał (Instrukcja..., 1998a).

5.2. Sondowania

Sondowania, mimo że należą do grupy metod umożliwiających jedynie w sposób pośredni określić parametry gruntów, są powszechnie stosowane w badaniach podłoża budowlanego. Pozwalają one charakteryzować podłoże na podstawie wskaźników oporu stawianego przez grunt przy wbijaniu, wciskaniu i wkręcaniu różnych końcówek.

Przy prawidłowym wykonywaniu, sondowania zapewniają otrzymanie obiektywnych informacji o podłożu w sposób szybki i prosty. Wiele urządzeń ma automatyczną rejestrację mierzonych wskaźników.

Parametry gruntu przydatne w projektowaniu otrzymuje się z zależności korelacyjnych. W przypadku gdy takich zależności wcześniej nie opracowano, charakterystyki gruntu wyznaczone sondowaniami należy interpretować wyłącznie jakościowo.

W badaniach polowych stosuje się:
sondowania dynamiczne (SD-10, SD-30, SD-50, SD-63.5),
s sondowania statyczne (CPT, CPTU),
s sondowanie sondą cylindryczną (SPT),
s sondowanie sondą wkręcąną (ST),
s sondowanie sondą obrotową (VT).

Ze względu na możliwości interpretacji wyników sondowania stosuje się do badań:
gruntów spoistych i organicznych — statyczne sondy stożkowe CPT i CPTU, sondę cylindryczną (SPT), sondę wkręcącą (ST) i sondę obrotową (VT),
gruntów niespoistych — wszystkie rodzaje sond, z wyjątkiem sondy obrotowej.

Zaletą sondowania, oprócz sondy cylindrycznej (SPT), jest ich wykonywanie bezpośrednio z powierzchni terenu. W przypadku przeszkód lub warstw o bardzo dużym zagęszczeniu można wykonać podwierdzie i z ich dna wykonać sondowania. Wymagania dotyczące sprzętu, procedur badawczych i opracowania wyników zawiera Eurocode 7 część 3 (pr ENV 1997-3). Interpretacja wyników sondowania została podana w Instrukcji... (1998a).
5.2.1. Sondowania dynamiczne

Norma dotycząca badań polowych PN-74/B-04452 zalecała stosować dwa rodzaje sond dynamicznych:
— sondę lekką (SL),
— sondę ciężką (SC).

W pr ENV 1997-3 omówiono 4 rodzaje sond dynamicznych. Charakterystykę techniczną sond zestawiono w tabeli 3.

Sondy dynamiczne umożliwiają charakteryzowanie w sposób ciągły podłoża gruntowego. Sonda lekka SD-10 (ang. oznaczenie DPL) odpowiada dotychczas stosowanemu oznaczeniu SL. Sonda średnia SD-30 (DPM) jest dotychczas stosowana w kraju w ograniczonym zakresie. Sonda ciężka SD-50 (DPH), stosowana w kraju w ograniczonym zakresie, parametrami odpowiada niemieckiej sondzie ciężkiej według DIN 9094. Sonda bardzo ciężka SD-63.5 (DPSH) parametrami odpowiada sondzie, która dotychczas w kraju była określana jako ciężka (SC). Konstrukcja wymienionych typów sond i metodyka badań są podobne.

Parametrem sondowania dynamicznego jest liczba uderzeń młota sondy potrzebna na wprowadzenie końcówki stożkowej w grunt na głębokość 0,10 m (sondy SD-10, SD-30 i SD-50) lub 0,20 m (sonda SD-63.5). Kształt końcówki stożkowej dla każdej sondy jest taki sam, różnią się tylko wymiarami. Kąt wierzchołkowy stożka wynosi 90°, dotychczas obowiązywał kąt 60°.

Podstawą do interpretacji wyników sondowań jest wykres ułożony na wprost sondowania dynamicznego. Interpretację sondowania dynamicznego można wykonać jedynie w przypadku znajomości profilu litologicznego.

![Tabela 3](image-url)
Sondowania dynamiczne stosuje się do:
— rozpoznania podstawowych cech gruntów niespoistych w warunkach naturalnych, a szczególnie stopnia zagęszczenia,
— wydzielenia warstw i soczewek gruntów słabych,
— określenie głębokości podłoża nośnego,
— okonturowania warstw o odmiennych cechach w nawiązaniu do profilu litologicznego,
— wyznaczenia miejsc poboru próbek gruntu.

5.2.2. Sondowania statyczne

Badanie właściwości podłoża metodą statycznego sondowania polega na pomiarze w sposób ciągły oporu stożka i tarcia na tulei końcówki zakończonej stożkiem podczas wciskania w grunt ze stałą prędkością. Zastosowanie końcówki z piezostożkiem umożliwia pomiar ciśnienia wody w porach gruntu. Metoda charakteryzuje się dużą dokładnością pomiaru i wrażliwością na zmienne właściwości podłoża.

W pr ENV 1997-3 wyróżnia się statyczną sondę stożkową (CPT) i z pomiarem ciśnienia wody w porach (CPTU).

Ze względu na stosowanie w badaniach elektrycznego lub mechanicznego systemu rejestracji wyników, ważne jest każdorazowe zaznaczenie tych informacji w metryce sondowania. Interpretacja ilościowa wyników uzyskanych przy końcówce mechanicznej różni się od określonych końcówką elektryczną (Instrukcja..., 1998a).

Interpretacja jakościowa sondowań statycznych obejmuje określenie:
— jednorodności budowy podłoża,
— granic między różnymi pod względem litologicznym warstwami, np. między gruntami niespoistymi a organicznych,
— granicy między gruntami nasypowymi a rodzimymi,
— głębokości pobrania próbek gruntów,
— wstępnej oceny stopnia skonsolidowania gruntów spoistych.

Zakres ilościowej interpretacji obejmuje określenie:
— rodzaju gruntu na podstawie nomogramu,
— stanu gruntów niespoistych i spoistych na podstawie zależności korelacyjnych,
— cech wskaźnikowych gruntu,
— parametrów odkształceniowych i wytrzymałościowych gruntów,
— ustalenie nośności pali.

Należy podkreślić, że metody interpretacji ilościowej opracowano na podstawie regionalnych związków korelacyjnych między parametrami gruntu a różnymi parametrami sondowania statycznego. W literaturze jest podawanych wiele takich zależności. Ważne jest więc opracowywanie zależności między danymi uzyskanymi z sondowań a wynikami badań laboratoryjnych dla gruntów występujących w Polsce. Również procedury harmonizacji polskich norm z eurokodami obejmują między innymi opracowanie zasad interpretacji uwzględniających doświadczenia krajowe.
5.2.3. Sondowania sondą cylindryczną (SPT)

Badanie sondą cylindryczną pozwala na punktową charakterystykę podłoża. Sondowanie wykonuje się w otworze badawczym. Końcówkę cylindryczną sondy wbija się w oczyszczone z urobku dno otworu.

Różne cechy gruntów określa się na podstawie zależności empirycznych, które często mają charakter lokalny. Na podstawie próbki gruntu z cylindra sondy można określić rodzaj gruntu, skład granulometryczny i wstępnie ocenić stan gruntu.

5.2.4. Sondowania sondą wkręcaną (ST)

Sondowania sondą wkręcaną wykonuje się z powierzchni terenu w sposób ciągły. Parametrem otrzymywanym z badania jest liczba półobrotów potrzebna do zagłębiania o 0,20 m końcówki sondy obciążonej masą 100 kg. Stosowane są sondy wkręcane ręcznie lub mechanicznie. Z doświadczeń krajowych wynika, że większe zastosowanie mają sondy mechaniczne.

 Wyniki sondowania należy przede wszystkim interpretować jakościowo. Ze względu na szybkość wykonywania badań są przydatne jako uzupełnienie wierceń badawczych. Umożliwiają przestrzenne okonturowanie warstw gruntów słabszych oraz wytypowanie miejsce do szczegółowych badań.

 Wyniki sondowania można wykorzystać do oszacowania stopnia zagęszczenia piasków. Grunty, w których sonda zagłębia się jedynie pod obciążeniem statycznym, nie nadają się do posadowienia bezpośredniego. Jest to możliwe w grunbach, w które sonda zagłębia się pod obciążeniem 100 kg i liczbie półobrotów powyżej 10.

W gruntach spoistych występujących w kraju, ze względu na tarcie gruntu o żerdzie, zasięg głębokościowy sondy wynosi 6–8 m.

5.2.5. Sondowania sondą obrotową (VT)

Sondę obrotową stosuje się do:
— określania wytrzymałości na ściananie bez odpływu w grunbach spoistych ($\tau_\text{f} < 150$ kPa) i gruntach organicznych,
— określania stref osłabień w grunbach oraz śledzenia przebiegu strefy poślizgu,
— określania innych cech gruntów na podstawie zależności korelacyjnych.
5.3. Badania presjometryczne

Badania presjometryczne są stosowane w niektórych krajach do projektowania posadowień budowli. W Polsce badania te są wykonywane w bardzo ograniczonym zakresie. Istnieje kilka rozwiązań konstrukcyjnych presjometru. Najbardziej znany i stosowany jest presjometr opracowany przez L. Menarda.

Wyniki badań presjometrycznych wykorzystuje się do:
- obliczeń granicznej nośności gruntu,
- analizy osiadania fundamentów bezpośrednich i głębokich,
- określenia osiowej i bocznej nośności pali.

Badania presjometryczne wykonuje się na określonej głębokości lub częściem pomiary prowadzi się w całym profilu w odstępach 1,0–1,5 m.

Należy podkreślić, że badanie presjometryczne jest metodą empiryczną i wymaga przy projektowaniu posadowień budowli korzystania ze specjalistycznych materiałów i wytycznych opracowanych dla tej techniki (F. Baguelin i in., 1984).

5.4. Badania dylatometryczne gruntów i skał

Dylatometr jest przyrządem umożliwiającym rozpoznanie i pomiar parametrów gruntu bezpośrednio w podłożu. Przydatny jest do:
- identyfikacji rodzaju gruntu w profilu pionowym,
- ustalenia historii naprężenia w gruncie,
- oszacowania wartości parametrów, jak: wytrzymałość na ścignanie bez odpływu, naprężenie prekonsolidacji, moduły odkształcenia, współczynnik parcia bocznego w spoczynku K_o w gruntach niespoistych i spoistych.

Parametry gruntu określone dylatometrem są wyznaczane z zależności empirycznych. Powinny być potwierdzane oznaczeniami laboratoryjnymi. Doświadczenia krajowe w stosowaniu dylatometru są małe.

5.5. Próbne obciążenia płytą

Próbne obciążenia płytą szczegółowo omówiono w normie PN-74/B-04452 i Instrukcji... (1980) oraz pr ENV 1997-3.

Próbne obciążenie płytą pozwala na określenie modułu podatności gruntu oraz wytrzymałości gruntu i skały in situ poprzez rejestrowanie obciążenia i odpowiadającego mu osiadania w czasie. Próbne obciążenia płytą najczęściej stosuje się w:
- badaniach zwietrzelin,
- badaniach gruntów nasypowych składających się z różnych materiałów.

Badania wykonuje się na powierzchni terenu lub w wykopach badawczych. Wyniki badań połowowych należy opracowywać w taki sposób, aby możliwa była ich kontrola i ocena przez osoby inne niż autor pomiarów.
5.6. Metody badań geofizycznych

Celem badań geofizycznych jest dostarczenie informacji o podłożu, w tym o warunkach posadowienia obiektu, warunkach hydrogeologicznych i właściwościach gruntów i skał. Badania te są również bardzo przydatne do rozwiązywania problemów ochrony środowiska.

Z wielu metod geofizycznych zastosowanie w dokumentowaniu geologiczno-inżynierskim mają metody geoelektryczne, sejsmiczne, geotermiczna, grawimetryczna, geofizyki jądrowej i atmogeochemiczne.

Metody geoelektryczne umożliwiają badanie rozkładu naturalnych i sztucznych pól elektromagnetycznych w podłożu. Z wielu metod najbardziej przydatne są: metoda elektrooporowa i georadarowa.

Metoda georadarowa (metoda elektromagnetyczna) znajduje coraz większe zastosowanie, gdyż emitowane fale odbijają się od podłoża na granicach warstw o różnej stałej dielektrycznej i przewodnictwie i umożliwia uzyskanie obrazu ośrodka gruntowego z dużą rozdzielczością. W terminologii angielskiej metoda ta jest określana jako *ground penetrating radar* (GPR). W płytkich badaniach dla celów geologii inżynierskiej, gdzie konieczna jest duża rozdzielczość, zasięg ten wynosi od kilku do kilkudziesięciu metrów.

Metody sejsmiczne polegają na badaniu przebiegu wzbudzonych fal sprężystych w ośrodku gruntowym lub skalnym. Na podstawie prędkości fal oraz cech dynamicznych i kinetycznych określana granice warstw gruntów i skał, ich właściwości fizyczno-mechaniczne oraz zasięg strefy wietrzenia w podłożu skalnym. Tomografia sejsmiczna przez prześwietlanie między otworami umożliwia bardzo dokładne rozpoznanie podłoża.

Sondowania i profilowania elektrooporowe oraz sejsmiczne pomiary refrakcyjne są przydatne do:

| — określenia miąższości zwietrzeliny i zasięgu strefy wietrzenia masywu skalnego, |
| — badania osuwisk, |
| — wyznaczania głębokości nieprzepuszczalnego podłoża, |
| — stwierdzenia występowania wód w strefach spęków masywu skalnego, |
| — okonturowania form erozyjnych i glaciektokonicznych. |

Sondowanie i profilowanie elektrooporowe oraz sejsmiczne pomiary refrakcyjne są przydatne do:

| — określenia miąższości zwietrzeliny i zasięgu strefy wietrzenia masywu skalnego, |
| — badania osuwisk, |
| — wyznaczania głębokości nieprzepuszczalnego podłoża, |
| — stwierdzenia występowania wód w strefach spęków masywu skalnego, |
| — okonturowania form erozyjnych i glaciektokonicznych. |
Metoda geotermiczna jest stosowana do wykrywania anomalii cieplnych w podłożu. Pozwala ona na zebranie wielu informacji o warunkach hydrogeologicznych i lokalizowanie strefy wypływu zanieczyszczeń, np. ze zbiorników.

Metoda grawimetryczna posługiwa się pomiarami siły ciężkości. Do wykrywania pustek podziemnych i kawern, które nawet przy niewielkich rozmiarach charakteryzują się dużym niedoborem masy, jest przydatna metoda mikrograwimetryczna.

Metody geofizyki jądrowej umożliwiają określenie poziomu promieniowania jonizującego, zlokalizowanie miejsce nagromadzenia pierwiastków promieniotwórczych i śledzenie dróg ich przemieszczeń. Wykorzystują także izotopy promieniotwórcze (np. jod 131) do określania kierunku przepływu wód podziemnych lub jako trasy migracji zanieczyszczeń, które są trudne do wykrycia innymi metodami.

Rodzaje zastosowań różnych metod geofizycznych podano w Instrukcji... (1998a) i w pracy R. Białostockiego i Z. Marczewskiego (1979).

W wielu przypadkach celowe jest łącze wykonanie pomiarów geofizycznych z badaniami atmogeochemicznymi. Polegają one na określeniu obecności w powietrzu glebowym par metali, chlorowców, węglowodorów, siarkowodorów i innych, w zależności od charakteru ogniska zanieczyszczenia.

5.7. Pobieranie próbek gruntu i skal

5.7.1. Pobieranie próbek gruntu

Celem pobierania próbek gruntu jest otrzymanie próbek do identyfikacji gruntu i badań laboratoryjnych, w których określa się parametry podłoża gruntowego.

Dotychczas zgodnie z normą PN-74/B-04452 pobierano próbki:
— o naturalnym uziarnieniu (NU),
— o naturalnej wilgotności (NW),
— o naturalnej strukturze (NNS).

Norma pr ENV 1997-3 wprowadza trzy kategorie pobierania próbek: A, B i C, różniące się stopniem naruszenia próbki.

Metody pobierania próbek zaliczone do kategorii A umożliwiają uzyskanie próbek, w których nie występują lub tylko zdarzają się niewielkie naruszenia struktury gruntu, powstałe podczas pobierania lub transportu. Inne parametry fizyczne gruntu są takie same jak in situ. Brak również zmian w składzie chemicznym.

Metody pobierania próbek zaliczone do kategorii B umożliwiają otrzymanie próbek o naruszonej strukturze. Wilgotność gruntu odpowiada naturalnej. Może być określony ogólny układ warstw gruntów lub składników.

Stosując metody pobierania próbek gruntu zaliczone do kategorii C, otrzymuje się próbki gruntu o całkowicie zmienionej strukturze. Ogólny układ różnych warstw gruntów i ich składników jest tak zmieniony, że nie jest możliwe dokładne określenie położenia warstw in situ. Wilgotność próbki może być inna niż gruntu, z którego ją pobrano.
5.7.2. Klasy jakości próbek gruntu

<table>
<thead>
<tr>
<th>Właściwości gruntu</th>
<th>Klasa jakości</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>wielkość cząstek</td>
<td>*</td>
</tr>
<tr>
<td>wilgotność</td>
<td>*</td>
</tr>
<tr>
<td>gęstość, stopień zagęszczenia, przepuszczalność</td>
<td>*</td>
</tr>
<tr>
<td>ścieżliwość, wytrzymałość na ścinanie</td>
<td>*</td>
</tr>
</tbody>
</table>

Tabela 4

5.7.3. Techniki pobierania próbek gruntu

W pr ENV 1997-3 techniki otrzymywania próbek gruntu podzielono na cztery grupy:
- Pobieranie próbek metodą wciskania/wbijania. Próbnik rurowy, tłokowy lub szczelinowo-rurowy zakończony ostrzem tnącym jest wprowadzany w podłoże przez wciskanie, dynamiczne uderzanie lub wibracyjnie (kategoria A lub B pobierania próbek).
- Pobieranie próbek obrotowo-rdzeniowe. Próbnik rurowy zakończony ostrzem tnącym poprzez obrót zgłębia się w grunt i umożliwia pobranie rdzenia. Próbinki obrotowo-rdzeniowe mogą mieć pojedynczą, podwójną lub potrójną rdzeniówkę, z lub bez wykładziny. Takie pobieranie próbek jest stosowane w kategorii B, w pewnych przypadkach w kategorii A. Można pobierać wibracyjne próbki gruntu.
- Pobieranie próbek gruntu świadrem ręcznym lub mechanicznym (kategoria C).
- Pobieranie próbek w postaci bloków jest wykonywane ręcznie przez wycinanie próbki z szybika, szybu i sztolni, a z większych głębokości specjalnymi próbikami. Pobieranie bloków jest najczęściej stosowane w kategorii A.
Próbniki wciskane/wbijane stosowane do pobierania próbek w metodach kategorii A muszą spełniać wymagania określone w pr ENV 1997-3.

Kategorię pobierania próbek należy wybrać w zależności od wymaganej jakości próbki do klasyfikacji gruntu i planowanych badań laboratoryjnych. W kategoriach A i B pobierane próbki powinny być uszczelnione natychmiast po pobraniu, aby zapobiec zmianom wilgotności.

Sprawozdanie z pobierania próbek powinno zawierać: dokładne dane konieczne do określenia profilu gruntu, głębokość pobrania próbek oraz obserwacje, które pozwolą oszacować stan próbek i ich fizyczne właściwości in situ.

W kategorii A pobierania próbki należy postępować w taki sposób, aby nie wystąpiły naruszenia próbki po wyjęciu lub podczas transportu i magazynowania. Próbki należy chronić przed gorącem, mrozem, wibracjami i wstrząsami podczas załadunku, transportu i magazynowania. Próbki należy przechowywać podczas przesyłania w kontenery, a w laboratorium temperatura i wilgotność powinny być stałe i możliwie najbardziej zbliżone do warunków in situ.

5.7.4. Pobieranie próbek skal

Celem pobierania próbek skal jest uzyskanie odpowiednich próbek do identyfikacji skały i badań laboratoryjnych. Pobrane próbki powinny zawierać wszystkie mineralne składniki warstwy, z której są pobierane. Próbki nie mogą być zanieczyszczone materiałem z innej warstwy lub dodatkowym materiałem używanym podczas pobierania próbek, jeżeli niemożliwe byłoby odróżnienie.

Zgodnie z pr ENV 1997-3 istnieją trzy kategorie pobierania próbek do opisu i badań laboratoryjnych: A, B i C.

W kategorii A pobierania próbek otrzymuje się próbki, w których nie wystąpiło lub wystąpiło jedynie nieznaczne naruszenie struktury skały. Właściwości wytrzymałościowe i odkształcielności, wilgotność, gęstość, porowatość i przepuszczalność oraz skład chemiczny próbek skał odpowiadają wartościami in situ.

W kategorii B pobierania próbek otrzymuje się próbki zawierające wszystkie składniki masywu skalnego in situ w ich oryginalnych proporcjach, a fragmenty skały zachowały swoje właściwości wytrzymałościowe i odkształcielności, wilgotność, gęstość i porowatość. Próbki umożliwiają rozpoznanie układu warstw i nieciągłości w masywie skalnym.

W kategorii C pobierania próbek struktura masy skalnej i jej nieciągłości zostały całkowicie zmienione, materiał skalny może być pokruszony i mogą wystąpić zmiany w składzie chemicznym. Typ skały i jej podłoże, tekstura i struktura mogą jednak zostać zidentyfikowane.

Uzysk rdzenia należy charakteryzować na podstawie następujących wskaźników:

— wskaźnik nieciągłości ośrodka (RQD): suma długości wszystkich części rdzenia, których długość wynosi 10 cm lub więcej, mierzona wzdłuż środka rdzenia, wyrażona jako procent długości przełotu rdzenia,

— uzysk litego rdzenia (SCR): długość odcinków rdzenia w kształcie cylindrów, wyrażona jako procent długości przełotu rdzenia,

— całkowity uzysk rdzenia (TGR): całkowita długość uzyskanej próbki rdzenia, wyrażona jako procent długości przełotu rdzenia.
5.7.5. Techniki pobierania próbek skał

Najodpowiedniejsze metody otrzymywania próbek skał są związane ze strukturą, stopniem zwietrzenia skały i wymaganą klasą jakości:

— Kategoria A lub B: wiercenie obrotowo-rdzeniowe, w którym cylinder z ostrzem tnącym jest wprowadzany przez obrót w skałę i w ten sposób uzyskuje się rdzeń próbki.

— Kategoria A lub B: pobieranie próbek metodą wciśkania/wbijania, w którym cylinder lub cylinder szczelinowy z ostrzem tnącym jest wprowadzany w bardzo lub całkowicie zwietrzałą skałę przez statyczny nacisk albo przez dynamiczne uderzanie. Próbinki wciśkane/wbijane to próbinki płokowe lub otwarte próbinki rurowe.

— Kategoria C: pobieranie próbki łyżką wiertniczą lub świędrem, gdzie próbka jest pobierana bezpośrednio z narzędzia wiertniczego.

— Kategoria C: pobieranie próbek przez urabianie, w którym skała, przerobiona i pokruszona, jest przenoszona na powierzchnię za pomocą czerpaka lub za pomocą krążącej płuczki wiertniczej.

— Kategoria A: blokowe pobieranie próbek wykonywane przez ręczne wycinanie z odkrywki sztolni, tuneli lub przy użyciu specjalnych próbników blokowych.

Wybór techniki powinien być dokonany zgodnie z jakością próbki wymaganą do klasyfikacji skały i badań laboratoryjnych. Dla skały całkowicie zwietrzałej lub zmienionej w grunt rezydualny można stosować wszystkie techniki pobierania próbek, jak dla gruntów. Dla skał świeżych i słabo do silnie zwietrzałych można stosować:

— obrotowe wiercenie,
— wycinanie,
— pobieranie próbek w postaci bloków.

W kategorii A i B po poborze rdzeni i ich wizualnej kontroli (wskazane wykonanie kolorowych zdjęć) próbki powinny być natychmiast zabezpieczone, aby utrzymać naturalną wilgotność. W przypadku stosowania osłon rdzenia lub rur do transportu i magazynowania próbek, powinny być one zawiniête wodoszczelne opakowanie. Próbki powinny być tak oznaczone, aby podstawa próbki i jej górna część były jednoznacznie określone. Próbki i rdzenie skał powinny być transportowane i przechowywane zgodnie z zasadami podanymi dla próbek gruntu.

6. BADANIA LABORATORYJNE

wyprowadzona jest ustalana na podstawie wyników badań polowych i laboratoryjnych oraz teo-
rii, korelacji lub doświadczenia, stanowiącego podstawę do określenia wartości charakterystycz-
nej parametru.

Przejście z dotychczasowego systemu normowego w Polsce na przyszły system norm euro-
pejskich potrwa jeszcze kilka lat. System norm europejskich będzie składać z części wspólnej
norm obowiązujących w całej EWG i części krajowych. W tym przejściowym okresie nie nie
stoi na przeszkodzie, aby stosować zasady już nie obowiązującej polskiej normy PN-88/B-04481
lub innych znanych norm ASTM, DIN i BS, przy czym wskazane byłoby zwrócenie dużej uwagi
na spełnienie wielu zaleceń i wymogów, które są podane w pr ENV 1997-2 i będą obowiązywać
w przyszłości przy wykonywaniu badań laboratoryjnych.

Do najistotniejszych zaleceń i wymogów należy zaliczyć:
— wprowadzenie 5. klas jakości pobranych do badań laboratoryjnych próbek gruntu i poda-
nie klasy jakości próbek do oznaczeń poszczególnych właściwości oraz 3 kategorie metod po-
bierania,
— wprowadzenie kategorii próbek gruntu przeznaczonych do badań laboratoryjnych ze
względu na sposób przygotowania,
— sprawdzanie minimalnych mas próbek gruntu w zależności od badanej właściwości na
próbach nienaruszonych i naruszonych,
— ustalenie wymiarów ziarn w próbkach gruntu w zależności od wymiarów stosowanej
aparatury,
— ustalenie minimalnej liczby próbek gruntu do badań jednej warstwy na potrzeby klasyfi-
kacji gruntów.

Ponadto norma pr ENV 1997-2 zwraca niezwykle wiele uwagi na:
— reprezentatywność pobranych do badań próbek gruntu,
— sposób przechowywania próbek,
— orientację próbek,
— charakterystyki pomiarowej aparatury mieszczące się w dopuszczalnym zakresie wartości,
— stosowanie do badań makroskopowych prostych, obiektywnych przyrządów,
— ostrożne i nie jedynie stosowanie metod statystycznych przy ustalaniu parametrów gruntu.

Norma pr ENV 1997-2 zawiera również badania dotyczące składu chemicznego próbek gru-
ntów i wody, dyspersyjności i wrażliwości mrozowej gruntów oraz komplek fizycznych i wy-
trzymałościowych badań próbek skał.

Ustalenie parametrów obliczeniowych stosowanych w projektowaniu według Eurokodu na-
stępuje na podstawie wartości parametrów charakterystycznych, których wartość określa się
m.in. badaniami laboratoryjnymi, w sposób podobny do podanego w obowiązującej normie
PN-81/B-03020. Eurokod zwraca uwagę na różnice między wartościami określonymi w bada-
niach na próbkach a parametrami gruntów i skał w masywach i obliguje do uwzględniania:
— obecności spęków,
— efektu czasu,
— kruchoci lub plastyczności badanych gruntów i skał.
6.1. Badania próbek gruntu podłoża

6.1.1. Badania składu granulometrycznego i klasyfikacja gruntów

Ze względu na genezę grunty dzieli się na:
— naturalne, powstałe w wyniku procesów i zjawisk geologicznych (rodzime) i nasypowe, tj. naturalne zmienione w wyniku technicznej działalności człowieka: nasypy budowlane i nasypy nie odpowiadające wymaganiom budowlanym,
— antropogeniczne — grunty sztuczne, powstałe najczęściej jako odpady przemysłowe, komunalne itp.; wymagają one indywidualnej oceny przydatności budowlanej.

Tabela 5

<table>
<thead>
<tr>
<th>Ocena frakcji</th>
<th>Frakcja</th>
<th>Kwalifikacja</th>
<th>Wielkość ziarn (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocena makroskopowa</td>
<td>bardzo grube</td>
<td>glązy</td>
<td>>200</td>
</tr>
<tr>
<td></td>
<td>kamienie</td>
<td></td>
<td>60–200</td>
</tr>
<tr>
<td>Przesiew</td>
<td>grube</td>
<td>zwiry</td>
<td>grube średnie drobne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>średnie fiasko</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drobne</td>
</tr>
<tr>
<td>piaski</td>
<td>grube</td>
<td>fiasko</td>
<td>średnie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drobne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proces sedymantacji</td>
<td>drobne</td>
<td>pyły</td>
<td>grube średnie drobne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>średnie fiasko</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drobne</td>
</tr>
<tr>
<td></td>
<td>ily</td>
<td></td>
<td><0,002</td>
</tr>
</tbody>
</table>
Tabela 6

Domieszk i grube frakcje (wg ISO/DIS 14688, 1994)

<table>
<thead>
<tr>
<th>Określenie domieszek</th>
<th>Przybliżona zawartość domieszek (%)</th>
<th>Główne typy osadów</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drobne ilu lub pyły i/lub piaski lub zwiry (w niewielkich ilościach)</td>
<td>5</td>
<td>piaski</td>
</tr>
<tr>
<td>Ilu lub pyły i/lub piaski lub zwiry*</td>
<td>5–20</td>
<td>lub</td>
</tr>
<tr>
<td>Ilu lub pyły i/lub piaski lub zwiry (w dużych ilościach)*</td>
<td>20–40</td>
<td>zwiry</td>
</tr>
<tr>
<td>Piasczyste lub żwirowe (w dużych ilościach)**</td>
<td>65</td>
<td>pyły</td>
</tr>
<tr>
<td>Piasczyste i/lub żwirowe</td>
<td>35–65</td>
<td>lub</td>
</tr>
<tr>
<td>Piasczyste i/lub żwirowe (w niewielkich ilościach)</td>
<td>35</td>
<td>ilu</td>
</tr>
</tbody>
</table>

* Opis jak dla gruntów drobnoziarnistych sklejających się pod wpływem wody. ** opis jak dla gruntów gruboziarnistych sklejających się pod wpływem wody.

Tabela 7

Podstawy klasyfikacji gruntów (wg ISO/DIS 14688, 1994)

<table>
<thead>
<tr>
<th>Ocena gruntów</th>
<th>Klasyfikacja o podobnym zachowaniu</th>
<th>Dalsze podziały</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunty suche nie sklejające się</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bardzo grube</td>
<td>większością zim 200 mm</td>
<td>wymagają specjalnego opracowania</td>
</tr>
<tr>
<td></td>
<td>większe niż 60 mm</td>
<td></td>
</tr>
<tr>
<td>grube</td>
<td>większą niż 2 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>większe niż 1,06 mm</td>
<td></td>
</tr>
<tr>
<td>Grunty suche sklejające się</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drobne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>plastyczność, wilgotność, czułość, wytrzymałość, sztywność, sprężystość</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wymagają specjalnego opracowania</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cieniomy kolor, mała gestość</td>
<td></td>
<td></td>
</tr>
<tr>
<td>organiczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wymagają specjalnego opracowania</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sztuczne</td>
<td></td>
<td>jak dla gruntów naturalnych</td>
</tr>
<tr>
<td>sztuczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klucz symboli typów gruntów:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>głowy składników</th>
<th>domieszkó</th>
<th>jak dołączane specjalnego opracowania opisują się według norm obowiązujących w poszczególnych krajach</th>
</tr>
</thead>
<tbody>
<tr>
<td>głazy</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>kamienie zwiry</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>piaski</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>pyły</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>ilu</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Grunty organiczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grunty sztuczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rys. 1. Ogólna identyfikacja i opis gruntów według ISO/DIS 14688 (1994)
Grunty rodzime dzieli się w zależności od zawartości części organicznych na grunty mineralne (≤2% substancji organicznej) i grunty organiczne (>2% substancji organicznej). Grunty mineralne dzieli się na grunty skaliste (o wytrzymałości na ściśkanie \(R_c > 0.2 \) MPa, których próbki nie wykazują zmian objętości pod działaniem wody destylowanej, a najmniejszy wymiar bloku jest nie mniejszy od 10 cm) i nieskaliste.

Według trójkąta klasyfikacyjnego Fereta (rys. 4 normy PN-86/B-02480) określana się rodzaje gruntów drobnoziarnistych. Gruntami spoistymi nazywa się takie grunty, które wykazują wartość plastyczności \(I_p > 1\% \) lub stałość kształtu bryłek przy naprężeniach >0,01 MPa w stanie powietrzno-suchym, przy czym minimalny wymiar bryłek nie może być mniejszy niż 10-krotna wartość maksymalnej średnicy ziarn. W stanie wilgotnym wykazują plastyczność.

W grunbach organicznych skalistych wyróżnia się węgiel brunatny i węgiel kamienny, natomiast wśród gruntów nieskalistych organicznych wyróżnia się: grunty próchnicze o zawartości substancji organicznej >2% (jako wynik wegetacji roślinnej oraz obecności mikroflory i mikrofauny), namyły powstałe na skutek osadzania się substancji mineralnych i organicznych w środowisku wodnym (namyły piaszczyste i gliniaste), gytie, czyli namyły o zawartości węgla wapnia >5%, torfy powstałe z obumarłych i podlegających stopniowej carbonizacji części roślin (zawartość substancji organicznej \(I_{om} > 30\% \)).

Podstawą uzupełniającej klasyfikacji gruntów spoistych są: całkowita powierzchnia właściwa \(S_t \) (określona metodą sorpcji błękitu metylowego), zawartość frakcji średnicy ziarn \(d > 0,25 \) mm oraz \(d > 0,074 \) mm (lub 0,071 mm) wyznaczona metodą na mokro, wskaźnik konsystencji \(I_c \) (tab. 13 normy PN-86/B-02480).

6.1.2. Badania podstawowych właściwości fizycznych gruntów

Badania cech fizycznych gruntów obejmują właściwości: szkieletu gruntowego, przestrzeni porowej oraz wody i niekiedy powietrza znajdujących się w porach. Taki podział uzasadnia występowanie w gruntach trzech faz.

Biorąc pod uwagę wartości niektórych parametrów fizycznych, grunty można podzielić na mniejsze klasy czy grupy. W zależności od stopnia zagęszczenia I_D grunty dzieli się na luźne, średnio zagęszczone, zagęszczone i bardzo zagęszczone; stopień wilgotności S, rozróżnia grunty suche, mało wilgotne, wilgotne i mokre; stopień plastyczności I_L wyróżnia stan plastyczności gruntów: zwarty, półzwarty, twardoplastyczny, plastyczny, miękko plastyczny i płynny (PN-86/B-02480).

Właściwości fizyczne oznacza się zgodnie z normą PN-88/B-04481. Obejmują one badanie:
— wilgotności gruntu w,
— gęstości objętościowej gruntu ρ i gęstości właściwej szkieletu gruntowego ρ_s,
— granic konsystencji (Atterberga) gruntu: skurczalności w_S, plastyczności w_P i płynności w_L.

Do określania wilgotności gruntu celowe jest stosowanie szybkich metod zalecanych przez normę niemiecką DIN 18 121(1989).

Według ISO/DIS 14688 (1994) podział plastyczności (stanu) gruntów oparty na granicy płynności w_L jest następujący:
- stan nisko plastyczny, $w_L < 35\%$,
- stan średnio plastyczny, $w_L 35–50\%$,
- stan plastyczny, $w_L 50–70\%$,
- stan bardzo plastyczny, $w_L 70–90\%$,
- stan wysoko plastyczny, $w_L > 90\%$,

Rys. 4. Plastyczność i pęcznienie różnorodnych bentonitów oraz gruntów spoistych trzeciorzędnowych (wg nomogramu Casagrande’a zmodyfikowanego przez B. Grabowską-Olszewską, 1996)
a stan zagęszczenia na podstawie stopnia zagęszczenia I_D:
- stan bardzo luźny, $I_D < 20\%$,
- stan luźny, $20\% < I_D < 40\%$,
- stan średnio zagęszczony, $I_D 40\% – 60\%$,
- stan zagęszczony, $I_D 60\% – 80\%$,
- stan bardzo zagęszczony, $I_D > 80\%$.

Metody te są przydatne przede wszystkim do seryjnych badań podobnych rodzajów gruntów, np. wykonywanych podczas robót ziemnych.

Badań granicy płynności przy użyciu miseczki Casagrande’a nie należy stosować w przypadku gruntów o właściwościach tiksotropowych; dotyczy to przeważnie pyłów (mułków i lessów).

Zależność pomiędzy wskaźnikiem plastyczności a rodzajem gruntu ze względu na spoistość zawiera tab. 7 normy PN-86/B-02480. Rysunek 4 pokazuje zależność między wskaźnikiem plastyczności a granicą płynności dla typowych gruntów Polski.

Z uwagi na aktywność koloidalną Skempton A (stosunek wskaźnika plastyczności I_P do zawartości frakcji ilowej f_i) grunty dzieli się na:
- nieaktywne, $A < 0,75$,
- normalnie aktywne, $0,75 < A < 1,25$,
- aktywne, $1,25 < A < 2$,
- wysoko aktywne (bentonitowe), $A > 2$.

Tabela 8

<table>
<thead>
<tr>
<th>Rodzaj badania</th>
<th>Wymiary próbki średnica/wysokość (mm)</th>
<th>Wymagana minimalna masa (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edometr</td>
<td>50/20</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>75/20</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>100/20</td>
<td>350</td>
</tr>
<tr>
<td>Ścisłanie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— jednoosiowe</td>
<td>35/70</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>38/76</td>
<td>200</td>
</tr>
<tr>
<td>— bez konsolidacji i odpływu (UU)</td>
<td>50/100</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>70/140</td>
<td>1 200</td>
</tr>
<tr>
<td>— trójosiowe</td>
<td>100/200</td>
<td>3 500</td>
</tr>
<tr>
<td></td>
<td>150/300</td>
<td>12 000</td>
</tr>
<tr>
<td>Bezpośrednie ściananie (prostopadłościan)</td>
<td>60/60/20</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>100/100/20</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>300/300/150</td>
<td>3 000</td>
</tr>
<tr>
<td>Gęstość</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D = 5,6 \text{ mm}$</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>$D = 8 \text{ mm}$</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>$D = 10 \text{ mm}$</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>$D > 10 \text{ mm}$</td>
<td>1,4 · MMS</td>
<td></td>
</tr>
</tbody>
</table>

D — największy wymiar ziarna w przeważającej części (10% lub więcej w masie), MMS — minimalna masa do badań uziarnienia metodą przesiewania.
Podstawą podziału na grunty próchniczne, namyś piaszczyste i gliniaste, gyttie, torfy oraz węgle brunatne i kamienne jest zawartość części organicznych \(I_{om} \). Zawartość części organicznych oznacza się przy użyciu 30-procentowego roztworu nadtlenku wodoru (określa się ilość węgla zawartego w substancji organicznej przez utlenienie go do CO₂). Przy zawartości \(I_{om} \) powyżej 10% można stosować metodę prażenia (lecz nie należy jej stosować przy rozróżnianiu gruntów organicznych i mineralnych). Właściwe jest stosowanie do badania \(I_{om} \) uniwersalnej metody Tiurina.

Przy dużej liczbie badań zawartości części organicznych celowe jest stosowanie metod mniej czasochłonnym, niż podane w normie PN-88/B-04481. Straty prażenia gruntów można określić stosując metodykę opisaną w normie niemieckiej DIN 18 128. Minimalna masa próbki do badań

<table>
<thead>
<tr>
<th>Badanie</th>
<th>Wymagana masa początkowa</th>
<th>Minimalna masa próbki przygotowanej do badań</th>
</tr>
</thead>
</table>
| Wgnotność | (co najmniej masa do przygotowania dwóch próbek) | II i płył
(D < 2 mm) | Piaski
(D > 2 mm) | Grunty zwroowe
\(D = 2-10 \text{ mm MMS} \),
\(D > 10 \text{ mm } 0.3 \cdot \text{ MMS} \)
30 g
100 g
min. 500 g |
| Gęstość właściwa | 100 g | 10 g (ziarna < 4 mm) |
| Uziarnienie: sìta | 2 · MMS | 50 g |
| Sedymentacja: areolom pipeta | 250 g, 100 g | II i Płył
12 g
30 g |
| Granice Atterberga | 500 g | 300 g (ziarna < 0.4 mm) |
| Wskaźnik lub stopień zagęszczenia| 8 kg | * |
| Dysperżyjność | 400 g | * |
| Zagęszczenie Proctor | 5 NS | * |
| CBR | 25 kg, 10 kg | * |
| CBR | 80 kg, 50 kg | * |
| Przepuszczalność** | 6 kg | * |

Średnica 100 mm	4 kg
75 mm	3 kg
50 mm	500 g
38 mm	250 g

* masa próbki zależy od właściwości gruntu w czasie badań. ** próbki o wysokości równej podwójnej średnicy.

\(D \) — średnica największego ziarna w przeważającej części (10% lub więcej w suchej masie), \(MMS \) — minimalna masa gruntu do badań uziarnienia metodą siotową: \(D = 2 \text{ mm} \), \(MMS = 120 \text{ g} \); \(D = 20 \text{ mm} \), \(MMS = 2 \text{ kg} \); \(D = 10 \text{ mm} \), \(D = 2 \text{ mm} \) lub mniej, \(MMS = 100 \text{ g} \); 5 — ziarna gruntu podatne na skruszenie podczas zagęszczenia, \(NS \) — ziarna gruntu niepodatne na kruszenie.

w zależności od rodzaju gruntu jest następująca: grunty organiczne — 15 g, grunty drobnoziarniste — 15 g, piaski — 30 g, pospolki — 200 g, ¿wir — 1000 g.

Próbka gruntu należy wysuszyć w temperaturze 105°C, a następnie po roztarciu poddać prażeniu w piecu muflowym. Próbka gruntu jest prażona w temperaturze 550°C aż do uzyskania stałej masy. Wymagane masy do badań innych właściwości podaje pr ENV 1997-2 (tab. 8, 9).

w zależności od rodzaju gruntu jest następująca: grunty organiczne — 15 g, grunty drobnoziarniste — 15 g, piaski — 30 g, pospolki — 200 g, ¿wir — 1000 g.

Próbkę gruntu należy wysuszyć w temperaturze 105°C, a następnie po roztarciu poddać prażeniu w piecu muflowym. Próbka gruntu jest prażona w temperaturze 550°C aż do uzyskania stałej masy. Wymagane masy do badań innych właściwości podaje pr ENV 1997-2 (tab. 8, 9).

Klasyfikacja gruntów pęcznujących (wg H. Seeda i in., 1962)

<table>
<thead>
<tr>
<th>Całkowite pęcznienie TE (%)</th>
<th>Potencjał pęcznienia S (%)</th>
<th>Stopnie ekspansji</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>0,0–1,5</td>
<td>niski</td>
</tr>
<tr>
<td>10–20</td>
<td>1,5–5</td>
<td>średni</td>
</tr>
<tr>
<td>20–35</td>
<td>5–25</td>
<td>wysoki</td>
</tr>
<tr>
<td>>35</td>
<td>>25</td>
<td>b. wysoki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Całkowite pęcznienie TE (%)</th>
<th>Potencjał pęcznienia S (%)</th>
<th>Wskaźnik plastyczności Ip (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5–10,0</td>
<td>0,4–1,5</td>
<td>10</td>
</tr>
<tr>
<td>13,5–18,7</td>
<td>2,2–2,8</td>
<td>20</td>
</tr>
<tr>
<td>21,4–28</td>
<td>5,7–12,2</td>
<td>30</td>
</tr>
<tr>
<td>28–35</td>
<td>11,8–25,0</td>
<td>40</td>
</tr>
<tr>
<td>33–40</td>
<td>20,1–42,6</td>
<td>50</td>
</tr>
</tbody>
</table>

TE — całkowite pęcznienie wyrażone jako procent spęcznienia powietrzno-suchej próbki poddanej nasyceniu wodą. **S** — potencjał pęcznienia badany bezpośrednią metodą, wyrażający procent spęcznienia próbki nasyconej wodą (bez możliwości jej odkształcania na boki) poddanej obciążeniu 7 kPa lub oszacowany na podstawie metod pośrednich.

Podział gruntów pęcznujących (Posadowienie..., 1990)

<table>
<thead>
<tr>
<th>f_i (%)</th>
<th>w_L (%)</th>
<th>I_p (%)</th>
<th>S_i (m2 · g$^{-1}$)</th>
<th>$e_{\rho \text{max}}$ (%)</th>
<th>$p_{\rho \text{max}}$ (MPa)</th>
<th>S_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>60</td>
<td>40</td>
<td>200</td>
<td>30</td>
<td>1,0</td>
<td>b. silnie pęczniące</td>
</tr>
<tr>
<td>40–50</td>
<td>50–60</td>
<td>30–40</td>
<td>150–200</td>
<td>20–30</td>
<td>0,6–1,0</td>
<td>silnie pęczniące</td>
</tr>
<tr>
<td>30–40</td>
<td>40–50</td>
<td>20–30</td>
<td>70–150</td>
<td>10–20</td>
<td>0,2–0,6</td>
<td>œrednio pęczniące</td>
</tr>
<tr>
<td><30</td>
<td><40</td>
<td><20</td>
<td><70</td>
<td><10</td>
<td><0,2</td>
<td>słabo pęczniące</td>
</tr>
</tbody>
</table>

f_i — zawartość frakcji ilowej oznaczona metodą areometryczną, przy użyciu colgenu jako stabilizatora, w_L — granica płynności, I_p — wskaźnik plastyczności, S_i — całkowita powierzchnia właściwa oznaczona testem sorpcyjnym, $e_{\rho \text{max}}$ — wskaźnik swobodnego pęcznienia, $p_{\rho \text{max}}$ — ciœnienie pęcznienia, S_e — stopień ekspansywności.

Próbkę gruntu należy wysuszyć w temperaturze 105°C, a następnie po roztarciu poddać prażeniu w piecu muflowym. Próbka gruntu jest prażona w temperaturze 550°C aż do uzyskania stałej masy. Wymagane masy gruntu do badań innych właściwości podaje pr ENV 1997-2 (tab. 8, 9).

Tabela 10

Tabela 11
6.1.3. Badania odkształcalności i wytrzymałości gruntów

Badania odkształcalności obejmują parametry ściśliwości i konsolidacji gruntów, natomiast wytrzymałość gruntów dotyczy głównie wytrzymałości na ścicanie.

Edometryczne moduły ściśliwości pierwotnej i wtórnej oraz współczynniki ściśliwości i konsolidacji są parametrami niezbędnymi przy obliczaniu całkowitego osiadania i osiadania w czasie.

Ściśliwość jest to zdolność do odkształcania się, a dokładniej do zmniejszania objętości wskutek oddziaływania obciążenia. Miarą ściśliwości gruntu są edometryczne moduły ściśliwości pierwotnej \(M_o \) i wtórnej \(M \) (kPa). Orientacyjne wartości modułu edometrycznego \(M_o \) i modułu odkształcenia ogólnego \(E_o \) można określić tzw. metodą B lub C na podstawie danych doświadczalnych (np. z obserwacji osiadania budowli lub korelacji regionalnych) albo według PN-81/B-03020:

— gruntów niespoistych w zależności od rodzaju i stopnia zagęszczenia \(I_D \) (rys. 6 normy),
— gruntów spoistych w zależności od ich rodzaju i stopnia skonsolidowania (A, B, C lub D) oraz od stopnia plastyczności \(I_L \) (rys. 7 normy).

Moduły ściśliwości metodą A wyznacza się laboratoryjnie w edometrach (lub konsolidometrach). Wyniki badań pozwalają na sporządzanie krzywych ściśliwości. Z gałęzi obciążenia obliczamy wartość modułu ściśliwości pierwotnej \(M_o \):

\[
M_o = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\sigma_{zt} - \sigma_{zy}}{\Delta h_i} = \sigma_{zd} \frac{h_1}{h_1 - h_2}
\]

i współczynnik ściśliwości \((a_v) \):

\[
a_v = \frac{\Delta \varepsilon}{\Delta \sigma},
\]

a z gałęzi odciążenia edometryczny moduł ściśliwości wtórnej \((M, \text{kPa}) \)

\[
M = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\sigma_{z_{\text{min}}} - \sigma_{zy}}{\Delta h_i} = \sigma_{zd} \frac{h_3}{h_3 - h_1},
\]

gdzie:

\(\Delta \varepsilon \) — zmiana wskaźnika porowatości w granicach przyrostu obciążenia,
\(\Delta \sigma \) — przyrost naprężenia (kPa),
\(\Delta \varepsilon \) — przyrost odkształcenia,
\(\Delta h_i \) — zmniejszenie wysokości próbki po zwiększeniu naprężeń (mm),
\(\sigma_{zy} \) — naprężenie pierwotne (kPa),
\(\sigma_{zt} \) — naprężenie całkowite = pierwotne + dodatkowe (kPa),
\(\sigma_{z_{\text{min}}} \) — naprężenie minimalne (kPa),
\(\sigma_{zd} \) — naprężenie dodatkowe (kPa),
\(h_1, h_2, h_3 \) — wysokość próbki przy kolejnych obciążeniach (mm),
\(h_{i-1} \) — wysokość próbki przed zwiększeniem naprężenia (mm).
W edometrach badania przeprowadza się najczęściej na próbkach o strukturze nienaruszonej w zakresie spodziewanych obciążzeń. Krzywoliniowy charakter zależności obciążenie–odkształcenie uzasadnia wyznaczanie modułów w ściśle określonym przedziale obciążzeń, najlepiej odwzorowujących przyszłe spodziewane zachowanie się projektowanego obiektu. W zakresie naprężeń wtórnym wyznacza się moduł ściśliwości wtórnej, natomiast w granicach naprężeń dodatkowych (większych od pierwotnych) — moduł ściśliwości pierwotnej. Grunty nienasycone powinny być badane w sakedometrach (K. Garbulewski i in., 1993).

W edometrach (lub konsolidometrach) przeprowadza się badania przy (K. H. Head, 1986):
— stopniowym wzroście obciążeń IL (podwajane wartości obciążeń; ang. incremental loading) — standardowe badanie (PN-88/B-04481),
— ciągłym wzroście obciążeń CL (ang. continuous loading).

W metodzie ciągłego zwiększania obciążeń CL wyróżnia się badania z zachowaniem:
— stałej prędkości odkształceń CRS (ang. constant rate of strain),
— stałej prędkości obciążeń CRL (ang. constant rate of loading).

W edometrach badania są długotrwałe, prowadzi się je do chwili, aż ciśnienie wody w porach ulegnie rozproszeniu. W celu skrócenia czasu badań można przeprowadzić badania ściśliwości i konsolidacji w konsolidometrze (najprostszy aparat to połączenie pierścień edometrycznego z podstawą aparatu trójosiowego ściskania), w którym istnieje możliwość pomiaru ciśnienia wody w porach na każdym etapie badania. W takich konsolidometrach można przeprowadzić badania o schemacie oznaczonym CRS lub CRL.

Moduł ściśliwości \((M_{ok}, \text{kPa}) \) w schemacie CRS określa się według wzoru:

\[
M_{ok} = \frac{\sigma'}{\varepsilon_\infty} \quad \text{lub} \quad M_{ok} = \frac{\sigma'}{\varepsilon},
\]

gdzie:

\[
\sigma' = \sigma - \frac{2}{3}U_H (\text{kPa}),
\]

\[
\sigma = \text{naprężenie całkowite (kPa)},
\]

\[
U_H = \text{ciśnienie wody w porach w podstawie próbk (kPa)},
\]

\[
\varepsilon_\infty = \text{odkształcenie względne po nieskończonym długo czasie},
\]

\[
\varepsilon = \text{odkształcenie względne w wybranym przedziale naprężen } \Delta \sigma'.
\]

Wykonywanie badań konsolidometrycznych (Wytyczne..., 1989b) należy przeprowadzić w przypadkach, gdy:

— naprężenie efektywne nie przewyższa 90% naprężeń całkowitych,
— wartość stopnia wilgotności nie jest mniejsza od 0,90 w przypadku oznaczania modułu ściśliwości lub mniejsza od 0,95 w przypadku oznaczania współczynnika konsolidacji.

Na podstawie pomierzonych odkształceń próbek gruntu obliczoną wartość modułów ściśliwości uznaje się za mierodajną, jeśli:

— odkształcenia własne edometru nie przekraczają 50% odkształceń badanego gruntu, przy czym odkształcenie własne edometru uwzględnia się przy obliczaniu odkształceń próbki gruntu,
— różnica wartości \(\Delta h \) (odkształcenie własne edometru) przed i po badaniu ściśliwości danej próbki nie przekracza 50% wartości średniej.

Gdy \(M_o \) lub \(M \) jest większe od 20 MPa, należy wykonywać każdorazowo co najmniej 2 badania w edometrze.

Edometryczne badania powinny być uzupełnione kompletom badań właściwości fizycznych: wilgotności naturalnej (przed badaniem), wilgotności końcowej (po badaniu), gęstości objętościowej i właściwej, stanu konsystencji (gruntów spoistych).
Eurokod pr ENV 1994 przewiduje obliczanie osiadania fundamentu według metody odkształceniowej. Wielkość osiadania jest zależna od modułu Younga. Moduł Younga można oznaczyć w badaniach laboratoryjnych, np. w specjalnych urządzeniach pozwalających na wywołanie małych odkształceń.

Prekonsolidacja gruntów. Grunty w swej historii geologicznej (obciążenia i odciążenia) mogły być obciążone znacznie większymi nadciśnieniami, podobnie jak obciążenia odwodnienia, np. tektonicznych, lodowcowych itp., aniżeli to wynika z dzisiejszego obciążenia, a więc mogły przejść w tzw. stan przekonsolidowania. Krzywa ściśliwości przedstawiona w skali półlogarytmicznej, przy stosowaniu np. metody Casagrande’a, umożliwia wyznaczenie tzw. **obciążenia przekonsolidacji** ($\sigma'_{p_{\text{max}}}$, kPa), czyli obciążenia występującego w przeszłości, jakie jeszcze obecnie „pamięta grunt”.

Stopień przekonsolidacji (OCR, eng. *overconsolidation ratio*) jest miarą przekonsolidowania i równa się stosunkowi obciążenia przekonsolidacji ($\sigma'_{p_{\text{max}}}$, kPa) do naprężenia obecnie występującego na danej głębokości ($\sigma'_{z_{0}}$, kPa), a więc:

$$\text{OCR} = \frac{\sigma'_{p_{\text{max}}}}{\sigma'_{z_{0}}}.$$

Z uwagi na wartość OCR grunty można podzielić na:
- nieskonsolidowane, gdy OCR < 1,
- normalnie skonsolidowane, gdy OCR = 1,
- przekonsolidowane, gdy OCR > 1.

Wyznaczenie OCR pozwala na precyzyjne zakwalifikowanie badanego gruntu do odpowiedniej grupy A, B, C lub D. Grunty bardzo ściśliwe charakteryzują się często małą wodoprzepuszczalnością, powodującą powolny przebieg procesu ich konsolidacji.

Konsolidacja gruntów jest to odkształcenie w czasie, związane ze zmniejszeniem objętości porów i zawartości wody pod wpływem przyłożonego obciążenia. Proces konsolidacji zależy od współczynnika konsolidacji (C_v). Można go wyznaczyć z badań edometrycznych lub konsolidometrycznych. Przy badaniach edometrycznych przedstawionych jako zależność:

- Δh lub ε w funkcji pierwiastka z czasu według Taylora
 $$C_v = \frac{0,848H^2}{t_{90}},$$

- Δh lub ε w funkcji logarytmu z czasu według Casagrande’a
 $$C_v = \frac{0,196H^2}{t_{50}},$$

gdzie:

- C_v — współczynnik konsolidacji (cm2/s),
- H — droga drenażu (\sim1/2 wysokości próbki; cm)
- t — czas (s),
- t_{90} — czas, kiedy konsolidacja osiąga 90% (s),
- t_{50} — czas, kiedy konsolidacja osiąga 50% (s),
- 0,848 i 0,196 — wartości bezwymiarowego czynnika czasu dla 90% i 50% konsolidacji.
Na podstawie badań konsolidometrycznych współczynnik konsolidacji oblicza się według:

$$C_v = \frac{\Delta \sigma'}{\Delta t} \cdot \frac{H^2}{2U_H}$$

gdzie:

- $\Delta \sigma'$ — zakres naprężeń efektywnych, dla których oblicza się C_v,
- Δt — różnica czasu odpowiadająca przyrostowi naprężeń $\Delta \sigma'$,
- H — wysokość próbki w chwili odpowiadającej połowie przedziału Δ,
- U_H — ciśnienie wody w porach w chwili odpowiadającej połowie przedziału czasu Δ.

Dla gruntów gruboziarnistych i kamienistych badania ściśliwości wykonuje się w edometrach wielkowymiarowych (S. Pisarczyk, 1995), przy czym powinny być spełnione warunki:

$$D \geq 5 \, d_{max} \quad \text{oraz} \quad h/D = 1,$$

gdzie:

- D — średnica próbki,
- h — wysokość próbki,
- d_{max} — maksymalna średnica ziarn.

Wytrzymałość na ściśnięcie (rys. 5) jest najważniejszym parametrem charakteryzującym stan graniczny, czyli opór stawiany przez grunt powstającym naprężeń ściśnieniowych. Jest to wielkość składająca się ze spójności (c) i tarcia wewnętrznego (ϕ). Najczęściej stosowanym do gruntów kryterium wytrzymałościowym jest warunek granicznej wartości największego naprężenia stycznego Coulomba $\tau_f(\sigma_n)$ — naprężenie normalne do płaszczyzny ściśnienia w momencie zniszczenia gruntu:

$$\tau_f = \sigma_n \tan \phi + c.$$

W gruncie nasyconym wodą (osrodku dwufazowym) zasada naprężeń efektywnych (Terzaghi) określa, że maksymalna wytrzymałość gruntu nie jest funkcją całkowitego naprężenia normalnego, lecz naprężeń efektywnych σ_n', tj. różnicy pomiędzy całkowitym naprężeniem normalnym (σ_n) i ciśnieniem wody w porach (u_w):

$$\tau_f = (\sigma_n - u_w) \tan \phi + c' = \sigma_n' \tan \phi + c'.$$

Dla ośrodka trójfazowego (osrodku nienasyconego) można rozszerzyć równanie Coulomba (D. G. Fredlund i in., 1978) w następujący sposób:

$$\tau_f = (\sigma_n - u_a) \tan \phi + (u_a - u_w) \tan \phi_b + c',$$

gdzie:

- u_a — ciśnienie powietrza,
- ϕ_b — kąt tarcia określony z zależności $\tau = f(u_a - u_w)$,
- $u_a - u_w$ — ciśnienie ssania.

W normie PN-81/B-03020 można znaleźć wartości kąta tarcia ϕ_a i spójności c_a:

- dla gruntów niespoistych w zależności od ich rodzaju i stopnia zagęszczenia ID (rys. 3 normy),

u_w — ciśnienie wody w porach gruntu, u_p — ciśnienie powietrza w porach gruntu, $(u_p - u_w)$ — ciśnienie ssania w porach gruntu, c' — efektywna spójność, ϕ' — efektywny tarcia wewnętrzne; pozostałe objaśnienia w tekście
— dla gruntów spoistych w zależności od ich rodzaju i stopnia skonsolidowania (A, B, C lub D) oraz od stopnia plastyczności I_L (rys. 4 i 5 normy).

Wyznaczenie parametrów metodą A przeprowadza się najczęściej w aparatach prostego ściskania, trójosiowego ściskania lub pierścieniowym.

Badanie w aparacie prostego ściskania (skrzyżowym, Instrukcja..., 1998a) jest łatwe i szybkie. Powierzchnia ścięcia jest wymuszona przez konstrukcję aparatu, dlatego aparat ten nadaje się również do badania wytrzymałości na ściskanie gruntów zawierających powierzchnie osłabienia (nieciągłości), jak również do wielokrotnego ściskania po wytworzonej już plastycznie ściercia. Z zależności naprężenie ścinające–naprężenie normalne obliczać można kąt tarcia wewnętrznego ϕ i spójność c. Z uwagi na brak możliwości pomiaru ciśnienia wody w porach w tym aparacie, uzyskiwane parametry są wyrażone w naprężeniach całkowitych. Aparat nadaje się do badania rezydualnej (resztkowej) wytrzymałości na ściskanie gruntów.

W badaniu w aparacie trójosiowego ściskania (Instrukcja..., 1998a) można w sposób dość wierny modelować przyszłą pracę gruntu w warunkach naturalnych. W tym aparacie istnieje możliwość dowolnych zmian naprężeń głównych, warunków odpływu i konsolidacji. Wskutek tego zależnie od potrzeb można ustalić różne programy badawcze. Zniszczenie gruntu może nastąpić w badaniu ściskania próbki (kiedy naprężenie pionowe jest większe od poziomego) i w badaniu rozciągania (wydłużania), kiedy naprężenie pionowe jest mniejsze od poziomego. Istnieje możliwość pomiaru ciśnienia wody w porach. Badanie przy ciśnieniu boczyn równym zeru pozwala określić wytrzymałość na jednoosiowe ściskanie. Wyniki badań naniesione na wykresy zależności między odkształceniem ε oraz:
- naprężeniem dewiatorowym $q = 0.5(\sigma_1 - \sigma_3)$,
- stosunkiem efektywnych naprężen głównych $\sigma'_1 : \sigma'_3$,
- ciśnieniem wody w porach u,

ustalają moment zniszczenia próbki gruntu i wskazują na zachowanie się gruntu podczas obciążenia. Z wykresów $q = f(p), p = 0.5(\sigma_1 + \sigma_3)$ i $q = f(p'), p' = 0.5(\sigma'_1 + \sigma'_3)$ oblicza się efektywne i całkowite parametry wytrzymałości na ściskanie.

Przy wyborze metody badania w aparacie trójosiowego ściskania powinno się uwzględnić: spodziewane warunki hydrogeologiczne (drenaż) w podłożu budowlanym, tempo prac budowlanych (przyrost i prędkość obciążenia) i przepuszczalność gruntów oraz sposób przyłożenia występujących obciążeń (tab. 12).

Z. Wiłun (1987) zaleca stosować badania bez konsolidacji i bez odpływu (UU) w przypadku budowli o obciążeniu użytkowym wynoszącym 70% całkowitego obciążenia (parametry θ_{UU}, C_{UU}). Badania z konsolidacją i bez odpływu (CIU, CAU) przeprowadza się, gdy obciążenie użytkowe wynosi 30–70% całkowitego obciążenia (θ_{CIU}, C_{CIU}). K. H. Head (1986) podaje następujące wskazówki dotyczące wyboru rodzaju badań wytrzymałościowych w zależności od ich zastosowania:
- nośność podłoża i fundamentów na słabych gruntach spoistych (krytyczny moment zakończenia budowy): parametry całkowite — spójność c_u przy $\phi_u = 0$, badania trójosiowe QU lub CU,
- konstrukcje operowe: zakończenie budowy — parametry całkowite (spójność c_u), badanie QU; stan długotrwały — parametry efektywne c' i ϕ', badania CU lub CD,
- naturalne zbocza, osuwiska w gruncie nienaruszonym: stan długotrwały — parametry efektywne c_D i ϕ_D, badania CD lub CU; osuwiska w gruncie zaburzonym (ze złuszczeniemi): stan
długotrwały — wytrzymałość rezydualna c_r i ϕ_r, badania w aparacie skrzynkowym wielokrotnego ściśnięcia lub pierścieniowym,

— skarpy w gruncie nienaruszonym: podczas budowy — parametry całkowite (c i ϕ), badanie QU (ściśnięcie, rozciąganie); stan długotrwały — parametry efektywne c' i ϕ', badanie CU; skarpy w gruncie zaburzonym: stan długotrwały — wytrzymałość rezydualna c_r i ϕ_r, badanie w aparacie skrzynkowym wielokrotnego ściśnięcia lub pierścieniowym.

W gruntach spoistych o małej przepuszczalności ściśnięcie gruntu przy badaniu bez kondensacji i bez odpływu przeprowadza się z prędkością osiowego odkształcenia powyżej 2%/h, w badaniach z kondensacją bez odpływu z prędkością 0,05–2%/h, a w badaniach z kondensacją i odpływem ściśnięcie trwa kilka do kilkunastu dni. Wyznaczone w tym rodzaju badań wartości efektywne $\theta_{CU'}$ i $C_{CU'}$ mogą być wykorzystane do analizy stateczności podłoża przy powolnym wznoszeniu budowli. Badanie z kondensacją i z odpływem (CD) stosuje się wtedy, gdy obciążenie użytkowe wynosi mniej niż 30% całkowitego obciążenia obiektu. Uzyskane w tym badaniu parametry θ_D, C_D są zbliżone do wartości $\theta_{CU'}$ i $C_{CU'}$. Badanie wytrzymałości na ściśnięcie powinno się przeprowadzać na próbkach o strukturze nienaruszonej.

Badania wytrzymałości na ściśnięcie gruntów nienasyconych przeprowadza się w zmodyfikowanych aparatach trójosiowego ściśkania (lub skrzynkowych) umożliwiających pomiar ciśnienia ssania (D. G. Fredlund, H. Rahardjo, 1993).

Norma ISO/DIS 14688 rozróżnia na podstawie wytrzymałości na ściśnięcie w warunkach bez odpływu (CU) grunty o wytrzymałości:

— bardzo niskiej, <20 kPa,
— niskiej, 20–40 kPa,
— średniej, 40–75 kPa,
Rys. 6. Przykładowe linie wytrzymałości na ścignanie gruntów spoistych

1 — linia wytrzymałości maksymalnej (strefa I), 2 — linia wytrzymałości dla zwietrzelin (strefa II i III), 3 — linia wytrzymałości dla zwietrzelin (strefa IV), 4 — linia wytrzymałości rezydualnej; objaśnienia symboli w tekście
Rys. 7. Wyznaczanie parametrów trwałe wytrzymałości gruntów. Badania przykładowe a1, a2, a3 i b w kategorii A, c w kategorii B (metodyka wg BN-82/0403-02)

a — linia styczna do prostoliniowej części \(\Delta \sigma = f(\varepsilon) \), b — linia pozioma styczna w punkcie maksymalnej wytrzymałości, A — punkt przecięcia prostej a i b zrzutowany na krzywą \(\Delta \sigma = f(\varepsilon) \), \(\Delta \sigma_{kr} \), \(\varepsilon_{kr} \) — współrzędne punktu A wyznaczające stan napięcia krytycznego odpowiadającego wytrzymałości trwałej, \(q_0 \), \(q_T \) — linie wytrzymałości maksymalnej i trwałej, \(\sigma_T \), \(\sigma_T \) — napięcia odpowiadające końcowi prostoliniowego odcinka, \(\varepsilon_2 \) — prędkość odkształceń
— wysokiej, 75–150 kPa,
— bardzo wysokiej, >150 kPa.

Grunty podczas ściśnięcia ulegają odkształceniom. Opór ściśnięcia wzrasta do momentu powstania powierzchni ścięcia (maksimum wytrzymałości), przy dalszym odkształceniu opór zmniejsza się aż do ustalenia się, tzn. osiągnięcia parametrów wytrzymałościowych na powierzchni nieciągłości (wytrzymałości rezydualnej).

Wytrzymałość rezydualna (resztkowa) (τ_r, kPa) jest to opór gruntu na ściśnięcie, jaki występuje w próbie gruntu po utworzeniu powierzchni poślizgu i ustaleniu się warunków ściśnięcia przy dużych odkładaniach. Badania wytrzymałości rezydualnej można przeprowadzać w aparacie skrzynkowym (przez kilkakrotną powtórność ściśnięcia tej samej próbki) lub w aparacie pierścieniowym (rys. 6).

Wytrzymałość na ściśnięcie w aparacie skrzynkowym osiąga się przez co najmniej trzykrotne ściśnięcie, za każdym razem w przeciwnym kierunku (obracając próbkę o 180°). Badania...

(1996b) zalecają:
— pierwsze ścięcie, odkładania próbki 20% (~12 mm),
— drugie ścięcie w kierunku odwrotnym, odkładanie 40% (~24 mm),
— trzecie ścięcie w kierunku przeciwnym do poprzedniego, odkładanie 20% (~12 mm).

Do liczbowej oceny zmniejszania wytrzymałości na ściśnięcie przy przejściu od maksymalnej do resztkowej można wykorzystać wskaźnik Bishopa I_B lub Haefalego λ_r:

$$I_B = \frac{\tau_f - \tau_r}{\tau_f} \cdot 100; \quad \lambda_r = \frac{\tau_r}{\tau_f} = 1 - I_B.$$

Wskaźnik Bishopa ma tę zaletę, że wyraża bezpośrednio maksymalny procent zmniejszenia wytrzymałości, który może powstać wskutek postępującego zniszczenia struktury gruntu. Wartość I_B dla typowych gruntów Polski zmienia się w zakresie 10–90% (R. Kaczyński, 1984) i przykładowo wynosi dla:
— utworów lessopodobnych 10–20%,
— gлин zwałowych 30–40%,
— gruntów rzeczno-zastoiskowych 40–50%,
— ilów jurajskich 50–60%,
— ilów plioceńskich 60–70%,
— ilów mioceńskich 60–90%.

W górnictwie odkrywkowym (BN-82/0403-02) wyznacza się dla gruntów zwałowanych przede wszystkim **wytrzymałość trwałą**, którą rozumie się jako opór ściśnięcia realizowany w elemencie gruntowym przy nieograniczonym czasie trwania obciążenia. Badania są wykonywane w aparatach trójosiowego ściśkania. Wartości parametrów wytrzymałości trwałej są wyznaczane według zróżnicowanych sposobów, w zależności od kategorii dokumentowania złoża (B i A, rys. 7). Na etapie rozpoznania C₁ natomiast wytrzymałość trwała gruntu $\tau_T = 0,55\tau_r$, gdzie τ_r oznacza wytrzymałość (standardową) na ściśnięcie ustaloną według określonej metodyki, właściwej dla danego etapu rozpoznania złoża. W górnictwie odkrywkowym spotyka się jeszcze dwa określenia:
— wytrzymałość natychmiastowa, jako opór ściśnięcia jaki może być realizowany w gruncie przy obciążeniu krótkotrwałym (w czasie bliskim zeru),
— wytrzymałość doraźna, jako opór ściśnięcia jaki może być realizowany w gruncie w określonym czasie t trwania obciążenia ($0 < t < \infty$); wartości wytrzymałości doraźnej mieszczą się między wartościami wytrzymałości natychmiastowej i trwałej.
6.1.4. Badania współczynnika filtracji i przewodności hydraulicznej

Stosowane metody badań przepuszczalności gruntów można znaleźć m.in. w pracach: Badania... (1996a), Z. Pazdro i B. Kozerski (1990), Z. Wilun (1987), K. H. Head (1992). Współczynnik filtracji \(K \) można również obliczyć z empirycznych zależności wartości \(k \) od uziarnienia gruntów, przy czym zaleca się stosowanie wzorów:

— USBSC (amerykańskiego), dotyczącego piasków drobno- i średnioziarnistych, średnicy miarodajnej \(0,01 \text{ mm} \leq d_{20} \leq 2,0 \text{ mm} \) i temperatury wody \(10^\circ\text{C} \):

\[
k = 0,0036 \frac{d_{20}^{3,3}}{d_{20}} \text{ (m/s)},
\]

— Slichtera, odnoszącego się do piasków i żwirów, średnicy miarodajnej \(0,01 \leq d_{10} \leq 5,0 \text{ mm} \):

\[
k = 88,3 \frac{d_{10}^{2}}{n} \text{ m/\(n \)} \text{ (m/d)},
\]

gdzie:

\(d_{10}, d_{20} \) — średnice ziarn, które wraz z mniejszymi stanowią wagowo 10 lub 20% składu gruntu (mm),

\(n \) — współczynnik lepkości dynamicznej (tab. 13),

\(m \) — współczynnik liczbowy zależny od porowatości (tab. 14),

<table>
<thead>
<tr>
<th>(T) (°C)</th>
<th>(\eta)</th>
<th>(T) (°C)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,0152</td>
<td>11</td>
<td>0,0127</td>
</tr>
<tr>
<td>6</td>
<td>0,0147</td>
<td>12</td>
<td>0,0124</td>
</tr>
<tr>
<td>7</td>
<td>0,0143</td>
<td>13</td>
<td>0,0120</td>
</tr>
<tr>
<td>8</td>
<td>0,0139</td>
<td>14</td>
<td>0,0117</td>
</tr>
<tr>
<td>9</td>
<td>0,0135</td>
<td>15</td>
<td>0,0114</td>
</tr>
<tr>
<td>10</td>
<td>0,0131</td>
<td>16</td>
<td>0,0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m)</th>
<th>(n)</th>
<th>(m)</th>
<th>(n)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,26</td>
<td>0,01187</td>
<td>0,28</td>
<td>0,02122</td>
<td>0,30</td>
<td>0,02356</td>
</tr>
<tr>
<td>0,27</td>
<td>0,01350</td>
<td>0,29</td>
<td>0,01694</td>
<td>0,30</td>
<td>0,01905</td>
</tr>
<tr>
<td>0,28</td>
<td>0,01517</td>
<td>0,30</td>
<td>0,01951</td>
<td>0,31</td>
<td>0,02122</td>
</tr>
<tr>
<td>0,29</td>
<td>0,01694</td>
<td>0,31</td>
<td>0,02122</td>
<td>0,32</td>
<td>0,02356</td>
</tr>
<tr>
<td>0,30</td>
<td>0,01905</td>
<td>0,32</td>
<td>0,02356</td>
<td>0,33</td>
<td>0,02601</td>
</tr>
<tr>
<td>0,31</td>
<td>0,02122</td>
<td>0,33</td>
<td>0,02601</td>
<td>0,34</td>
<td>0,02878</td>
</tr>
<tr>
<td>0,32</td>
<td>0,02356</td>
<td>0,35</td>
<td>0,03163</td>
<td>0,36</td>
<td>0,03473</td>
</tr>
<tr>
<td>0,33</td>
<td>0,02601</td>
<td>0,36</td>
<td>0,03473</td>
<td>0,37</td>
<td>0,03808</td>
</tr>
<tr>
<td>0,34</td>
<td>0,03163</td>
<td>0,38</td>
<td>0,04154</td>
<td>0,39</td>
<td>0,04254</td>
</tr>
<tr>
<td>0,35</td>
<td>0,03473</td>
<td>0,39</td>
<td>0,04254</td>
<td>0,40</td>
<td>0,04922</td>
</tr>
<tr>
<td>0,36</td>
<td>0,03808</td>
<td>0,40</td>
<td>0,04922</td>
<td>0,41</td>
<td>0,05339</td>
</tr>
<tr>
<td>0,37</td>
<td>0,04154</td>
<td>0,41</td>
<td>0,05339</td>
<td>0,42</td>
<td>0,05789</td>
</tr>
<tr>
<td>0,38</td>
<td>0,04154</td>
<td>0,42</td>
<td>0,05789</td>
<td>0,43</td>
<td>0,06267</td>
</tr>
<tr>
<td>0,39</td>
<td>0,04254</td>
<td>0,43</td>
<td>0,06267</td>
<td>0,44</td>
<td>0,06776</td>
</tr>
<tr>
<td>0,40</td>
<td>0,04922</td>
<td>0,44</td>
<td>0,06776</td>
<td>0,45</td>
<td>0,07295</td>
</tr>
<tr>
<td>0,41</td>
<td>0,05339</td>
<td>0,45</td>
<td>0,07295</td>
<td>0,46</td>
<td>0,07838</td>
</tr>
<tr>
<td>0,42</td>
<td>0,05789</td>
<td>0,46</td>
<td>0,07838</td>
<td>0,47</td>
<td>0,08455</td>
</tr>
<tr>
<td>0,43</td>
<td>0,06267</td>
<td>0,47</td>
<td>0,08455</td>
<td>0,48</td>
<td>0,09160</td>
</tr>
<tr>
<td>0,44</td>
<td>0,06776</td>
<td>0,48</td>
<td>0,09160</td>
<td>0,49</td>
<td>0,09937</td>
</tr>
<tr>
<td>0,45</td>
<td>0,07295</td>
<td>0,49</td>
<td>0,09937</td>
<td>0,50</td>
<td>0,10763</td>
</tr>
</tbody>
</table>

Tabela 13

Zależność współczynnika lepkości dynamicznej wody \(\eta \) od temperatury \(T \)

Tabela 14

Wartość współczynnika obliczeniowego \(m \) w zależności od współczynnika porowatości \(n \)
Tabela 15
Podział gruntów i skał według właściwości filtracyjnych

<table>
<thead>
<tr>
<th>Przepuszczalność</th>
<th>Współczynnik filtracji (m/s)</th>
<th>Współczynnik przepuszczalności (darcey)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardzo dobra: runosze, zwiry, pospolki, grubo- i równoziarniste piaski; skały masywne z bardzo gęstą siecią drobnych szczelin</td>
<td>> 10^-3</td>
<td>> 100</td>
</tr>
<tr>
<td>Dobra: piaski gruboziarniste nieco zaglinione, piaski różno- i średnioziarniste; kruche, słabe spojone gruboziarniste piaskowce, skały masywne z gęstą siecią szczelin</td>
<td>10^-3-10^-4</td>
<td>100-10</td>
</tr>
<tr>
<td>Średnia: piaski droboziarniste równomiernie uziarnione, less</td>
<td>10^-4-10^-5</td>
<td>10-1</td>
</tr>
<tr>
<td>Słaba: piaski pyłaste, glinaste, pyły; piaskowce, skały masywne z rzadką siecią drobnych spękana</td>
<td>10^-5-10^-6</td>
<td>1-0,1</td>
</tr>
<tr>
<td>Grunty i skały półprzepuszczalne: gliny, namazy; muławce</td>
<td>10^-5-10^-8</td>
<td>0,1-0,001</td>
</tr>
<tr>
<td>Grunty i skały nieprzepuszczalne: ilu, gliny zwięźłe, marge ilaste; łożyska, skały masywne niespękane</td>
<td>< 10^-8</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

Tabela 16
Przepuszczalność i metody badań głównych typów gruntów
(kolumny 1-5 wg K. H. Heada, 1985, kolumna 6 wg Z. Pazdry, B. Kozierskiego, 1990)

<table>
<thead>
<tr>
<th>Charakterystyka przepływu</th>
<th>Klasyfikacja przepuszczalności</th>
<th>Głównie typy gruntów</th>
<th>Metody badań bezpośrednie</th>
<th>Współczynnik filtracji f (m/s)</th>
<th>Podział właściwości filtracyjnych</th>
<th>Współczynnik przepuszczalności (darcey)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zwiry</td>
<td>wielkowy-miarowa komora CH</td>
<td></td>
<td>bardzo dobre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piaski</td>
<td>standardowa komora CH</td>
<td></td>
<td>dobre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iły spękane</td>
<td>komory FH</td>
<td></td>
<td>średnie</td>
<td></td>
</tr>
<tr>
<td>Dobry</td>
<td>wysoka</td>
<td>Piaski drobne i pyłaste</td>
<td>z obliczeń PSD</td>
<td></td>
<td>słabe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>średnia</td>
<td>Komory FH</td>
<td></td>
<td></td>
<td>grunty pół-przepuszczalne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>niska</td>
<td>Piaski</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bardzo niska</td>
<td>Piaski</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktycznie nieprzepuszczalny</td>
<td>Praktycznie nieprzepuszczalny</td>
<td>endometr FH</td>
<td>10^-1</td>
<td>10^-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iły niespękane</td>
<td></td>
<td></td>
<td>10^-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Komory FH</td>
<td></td>
<td></td>
<td>10^-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z teorii konsolidacji</td>
<td></td>
<td></td>
<td>10^-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Komory FH</td>
<td></td>
<td></td>
<td>10^-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gliny</td>
<td></td>
<td></td>
<td>10^-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muławce</td>
<td></td>
<td></td>
<td>10^-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iły zwięźłe</td>
<td></td>
<td></td>
<td>10^-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skały masywne</td>
<td></td>
<td></td>
<td>10^-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^-11</td>
<td></td>
<td></td>
<td>10^-12</td>
<td></td>
</tr>
</tbody>
</table>

CH — badania przy stałym spadku hydraulicznym, FH — badania przy zmiennym spadku hydraulicznym, PSD — obliczenia współczynnika ze składu granulometrycznego.
— temperatura wody (tab. 13).

W tabelach 13 i 14 podano wartości współczynnika lepkości dynamicznej wody \(\eta \) od temperatury i współczynnika liczbowego \(m \) według B. Kozerskiego (Wytynce..., 1977).

W gruntuach o współczynniku filtracji poniżej \(10^{-5} \text{ m/s} \) stosuje się badania o zmiennym spadku hydraulicznym i wykorzystuje zasady wynikające z teorii konsolidacji (tab. 16). Do tych badań są wykorzystywane różnego rodzaju komory, często aparaty trójosiowego ściskania, edometry, konsolidometry (np. Rowe’a, itp).

Współczynnik filtracji w tych badaniach oblicza się na podstawie liniowego prawa Darcy’ego, jak dla ośrodka dwufazowego, nasyconego (pory są wypełnione wodą). Powyżej zwierciadła wody w strefie areacji, w ośrodku trójfazowym w gruntach nienasyconych, przepływ wody jest nieliniowy. W celu określenia współczynnika filtracji, a właściwie strefy nienasyconej lepiej używać pojęcia współczynnika przewodności hydraulicznej i stosować inne równania. W gruntach

![Diagram](image)

GRUNT NIESĄCZYNY

Rys. 8. Graficzne przedstawienie zagadnienia przepływu wody w gruncie spoistym (D. G. Fredlund, 1996, z niewielkim uzupełnieniem)

\(k_w \) — współczynnik przewodności hydraulicznej w stanie nienasyconym, \(k_s \) — współczynnik filtracji w stanie nasyconym, \(v \) — prędkość filtracji, \(i \) — spadek hydrauliczny, \(a, n \) — stałe, \((a_n - a_w) \) — matrycowe ciśnienie ssania

6.2. Badania próbek skał podłoża

Badania próbek dostarczają podstawowych danych do analizy cech masywu skalnego, jak również pozwalają na ustalenie charakterystyk materiałowych skały wykorzystywanych dla różnych celów. Do najistotniejszych oznaczeń w celu określenia przydatności skał, przede wszystkim do budownictwa, górnictwa i drogownictwa, należy zaliczyć: klasyfikację geologiczną, gęstość (właściwą, objętościową), porowatość, wytrzymałość (na ściskanie, rozciąganie, zginanie, ściganie), nasiąkliwość, mrozoodporność i ścieńalność (A. Kidybiński, 1982).

Badania wytrzymałościowe przeprowadza się przeważnie na próbkach foremnych, dopuszczana również oznaczenia na próbkach nietrzeźwych. Międzynarodowe Biuro Mechaniki Górotworu zaleca badania na próbkach w kształcie walca średniicy 40–45 mm (i smukłości, czyli stosunku wysokości do średniicy 1:1). Polska norma (PN-84/B-04110) wymaga próbek sześcieniowych lub walcowatych o boku lub średnicy równych 50 mm, jednak dopuszcza badania na próbkach wyciętych z rdzeni wiertniczych średniicy 35–160 mm i smukłości 1:1. Często stosuje się również próbki o smukłości 2:1.

Badania wytrzymałości na ściskanie jednoosiowe (R_c, MPa) przeprowadza się na 5. (minimum 3) foremnych próbkach i rozumie się jako maksymalny opór próbki, równy sile działającej w momencie zniszczenia F (MN), odniesionej do jednostki powierzchni poprzecznego przekroju próbki A (m²):

$$R_c = \frac{F}{A}.$$

Wytrzymałość skały na ściskanie może być również określona przy użyciu próbek nietrzeźwych (15–25 próbek, trzy wzajemnie do siebie prostopadle wymiary nie mogą różnić się więcej niż 1,5 krotnie, a objętość każdej z nich powinna wynosić ok. 100 cm³), średnią wytrzymałość można obliczyć według wzoru (BN-77/8704-11):

$$R_c = \frac{\sum_{i=1}^{n} F_i}{n \cdot A}$$

gdzie:

- F_i — siła niszcząca i-tej próbki (MN),
- A — średnia powierzchnia przekroju próbki $A = (V^2)^{1/3}$ (m²),
- V — średnia objętość próbek $V = \frac{M}{n \cdot \rho_o}$ (m³),
- M — masa wszystkich próbek (kg),
- n — liczba badanych próbek,
\(\rho_o \) — gęstość objętościowa użytym odłamków (kg/m³).

W przypadku wykonania badań wytrzymałości na ściskanie na próbkach foremnych w stanie nasyconym (np. po badaniu nasiąkliwości) lub na próbkach foremnych, które zachowały się po badaniach mrozooporności, można obliczyć dwa wskaźniki: współczynnik roznikuwczania \((r) \):

\[
r = \frac{R_{cn}}{R_{cs}},
\]

gdzie:

- \(R_{cn} \) — wytrzymałość na ściskanie próbki nasyconej wodą (MPa),
- \(R_{cs} \) — wytrzymałość na ściskanie w stanie powietrznosuchym (MPa),

i współczynnik odporności na zamrażanie \((w) \):

\[
w = \frac{R_{cn}'}{R_{cs}},
\]

gdzie:

- \(R_{cn}' \) — wytrzymałość na ściskanie próbki nasyconej wodą po zakończeniu badania mrozooporności (MPa).

Badania wytrzymałości na ściskanie dla górnictwa przeprowadza się często metodą obciążeń punktowych. Metoda ta wskutek wykorzystania lekkiej przenośnej praski umożliwia wykonywanie badań ściskania próbek w terenie (np. przy otworze wiertniczym). Próbki mogą mieć kształt odcinków rdzenia lub mogą być nieforemne. Najczęściej przeprowadza się badania rdzenia między współbrzegowymi:

- klinami przy nacisku w poprzek podłużnej osi rdzenia \((p_r) \),
- stożkami przy nacisku w kierunku zgodnym z osią podłużną rdzenia \((p_c) \).

W czasie badania notuje się odległość punktów przyłożenia siły do próbki \(D \) oraz krytyczną wartość siły rozłupywania \((P_{kr}) \), powodującą rozpad próbki. Pomierzone wielkości pozwalają obliczyć wskaźnik wytrzymałości punktowej \(I_s \) i następnie wytrzymałość na jednoosiowe ściskanie \(R_c \) w funkcji \(I_s \) przy współczynniku równania prostej \(a \):

\[
I_s = \frac{P_{kr}}{D^2} \quad \text{i} \quad R_c = a \cdot I_s.
\]

Badania te wykonuje się co najmniej w 10 punktach dla 1 m rdzenia od stropu złoża do głębokości równej 1,5 m miejszości złoża, natomiast powyżej stropu w 5 punktach na 1 m rdzenia (Instrukcja... 1985).

Wytrzymałość na rozciąganie \((R_r) \) metodą poprzecznego ściskania zgodnie z normą BN-75/8704-05 oblicza się z wzorów:

dla próbki o kształcie walca:

\[
R_r = 0,637 \frac{F}{d \cdot l} \quad \text{(MPa)},
\]
dla próbki o kształcie prostopadłościanu:

\[R_r = 0,734 \frac{F}{b \cdot l} \text{ (MPa)}, \]

gdzie:

- \(F \) — wartość siły niszczącej (MN),
- \(l \) — długość próbki (m),
- \(d \) — średnica próbki walcowej (m),
- \(b \) — długość przekątnej podstawy próbki prostopadłościennnej (m).

Wytrzymałość na zginanie (\(R_g \)) określa się na próbkach prostopadłościennych o długości 200–250 mm i przekroju kwadratowym lub prostokątnym o bokach 40–50 mm i oblicza według wzoru:

\[R_g = \frac{M_g}{W_g}, \]

gdzie:

- \(M_g \) — niszczący moment zginający,
- \(W_g \) — wskaźnik wytrzymałości przekroju próbki.

Wytrzymałość na ścinanie (\(R_t \)) określa się w badaniach na próbkach o różnych kształtach (sześcian, walca, nieformy), przy stosowaniu odpowiednich metalowych matryc z klinami. Po zanotowaniu wartości siły w momencie zniszczenia próbki \(F \) (MN), oblicza się wartość naprężenia normalnego \(\sigma \) (MPa) oraz stycznego \(\tau \) (MPa), działających w płaszczyznach ścinania:

\[\sigma = \frac{F}{A} \sin \alpha, \quad \tau = \frac{F}{A} \cos \alpha, \]

gdzie:

- \(A \) — powierzchnia ścinania (m²),
- \(\alpha \) — kąt między płaszczyzną ścinania a kierunkiem siły ściskającej \(F \) (°).

Ponadto, jeśli dysponujemy wytrzymałościami na jednoosiowe ściskanie \(R_c \) i rozciąganie \(R_r \), to korzystając z kryterium wytrzymałości na ścinanie Coulomba–Mohra można określić:

\[c = \frac{\sqrt{R_r \cdot R_c}}{2}, \quad \lg \phi = \frac{R_c - R_r}{2 \sqrt{R_r \cdot R_c}}, \]

gdzie:

- \(c \) — spójność, odcinek wyznaczony przez styczną do kół Mohra na osi \(\tau \),
- \(\phi \) — kąt nachylenia stycznej do kół Mohra w stosunku do osi \(\sigma_n \).

Dysponując wytrzymałością na rozciąganie \(R_r \) można, stosując kryterium Griffitha, określić wytrzymałość na ścinanie, która jest w tym przypadku funkcją paraboliczną:

\[R_r = \sqrt{4R_r (R_r - \sigma_n)}, \]

gdzie:

- \(\sigma_n \) — naprężenie normalne prostopadle do płaszczyzny szczeliny; dla \(\sigma_n = 0, \tau = 2R_r = c \).
Na próbkach o analogicznych wielkościach można oznaczyć parametry nasiąkłości wodą według PN-67/B-04102 i mrozoodporności według PN-67/B-04102.

6.2.1. Badanie parametrów sprężystych skał

W badaniach laboratoryjnych parametry te określa się dla skał podczas jednoosiowego ściśkania (warunki statycznego obciążenia) lub przy zastosowaniu ultradźwięków (parametry dynamiczne).

W badaniach ściśkania prasa wytrzymałościowa musi mieć możliwość rejestracji odkształceń osiowych i obwodowych oraz sił, najlepiej automaitycznego wykresu naprężenie–odkształcenie. Z odcinka lińowego zależności naprężenie–odkształcenie wyznacza się moduł sprężystości \(E \) i współczynnik Poissona \(v \). Badania ultradźwiękowe przeprowadza się na próbkach walcowych (jak w badaniach ściśkania) przy zastosowaniu odpowiednich głowic nadawczych i odbiorczych o różnej częstotliwości. W tych badaniach wyznacza się (z pomiarów drogi i czasu przejścia) prędkość propagacji fali podłużnej \(V_p \) i poprzecznej \(V_s \). Prędkości te są podstawą obliczenia dynamicznego modułu sprężystości \(E_d \) i动态的 wartości współczynnika Poissona \(v_d \) (przy gęstości skały \(\rho_s \)):

\[
E_d = \rho_s \cdot V_p^2,
\]

\[
v_d = \frac{0.5 - \left(\frac{V_p}{V_s} \right)^2}{(1 - \frac{V_s}{V_p})^2},
\]

oraz można obliczyć pozostałe 3 dynamiczne stałe sprężyste:

— moduł odkształcenia postaciowego,
— moduł odkształcenia objętościowego,
— stałą Lamego.

Dla gruntów sprężystych wyznacza się w specjalnych komorach trójosiowego ściśkania lub konsolidometrach, wykorzystując właściwości bender element.

6.2.2. Badanie wskaźnika odbojności sprężystej

Młotki odbojne często wykorzystuje się przy ciągłym profilowaniu masywu skalnego. Pozwalają one na określenie zmiennosci cech geologiczno-inżynierskich. Młotki odbojne są przyrządami, które umożliwiają przeprowadzenie udaru o znanej energii na analizowaną powierzchnię skały i wyznaczenie wskaźnika odbojności sprężystej \(r_{sp} \). W praktyce, w zależności od wytrzymałości skały, stosuje się młotki odbojne o różnej energii udaru w granicach 0,70–39,0 J. W Polsce najbardziej rozpowszechnione są młotki typu N. Badania Głównego Instytutu Górnictwa (GIIG) wykazały konkretne związki korelowalne między wskaźnikiem odbojności \(r_{sp} \) a wytrzymałością \(R_c \), wskaźnikiem zwięzłości \(f_z \) i innymi parametrami, głównie sprężystymi, różnych skał. A. Kidybiński (1982) podaje dla karbońskich skał niewęglanowych następujące zależności:

\[
R_c = 0,447 \cdot 10^{0,045r_{sp} + \rho_0} \quad \text{(MPa)},
\]
\[f_z = 0.157 e^{0.043r_{sp}} \]

\[\rho_o \] — średnia gęstość objętościowa skały (g/cm³).

6.2.3. Badanie wskaźnika pełzania i relaksacji

Parametry reologiczne ustala się w badaniach pełzania i relaksacji:
- badanie pełzania polega na określeniu zależności odkształcenia \((\Delta\epsilon)\) w funkcji czasu \((\Delta t)\) przy stałym obciążeniu,
- badanie relaksacji to zależność zmiany naprężenia w czasie od czasu przy stałej wartości odkształcenia,
- podstawowymi wskaźnikami reologicznymi, które określa się według wytycznych Międzynarodowego Biura Mechaniki Górotworu są: godzinowy wskaźnik pełzania i czas relaksacji.

Godzinowy wskaźnik pełzania wyznacza się na próbkach walcowych, jakich używa się w badaniach wytrzymałości na ściskanie. Próbki obciąża się w prasie wytrzymałościowej obciążeniem równym 70%, notując odkształcenie wzdłuż osi. Normowy wskaźnik pełzania \(N = \Delta\epsilon/\Delta t\) równy jest stosunkowi przyrostu odkształceń zmierzonych po 65 i 5 min od chwili pełnego obciążenia.

Czas relaksacji wyznacza się z krzywej obciążenia \((\sigma)\) w funkcji czasu \((t)\) przy stałym odkształceniu \((\epsilon = \text{const})\), jako długości odcinka wyznaczonego na osi czasu przez styczną do podanej funkcji. Badanie relaksacji wykonuje się na analogicznych próbkach jak podczas pełzania w relaksomierzach.

6.2.4. Badanie wskaźnika rozmakalności

W GIG opracowano metodę wyznaczania wskaźnika rozmakalności \((r)\) opartą na teście trzydniowym. Test ten polega na zanurzeniu kilku nieforemnych bryłek skały, objętości około 100–200 cm³ każda, w wodzie kopalnej na okres 24 h, po czym wynurzeniu na 24 h (na siatkowej podstawce) i kolejnym zanurzeniu na 24 h. W ten sposób cykl badania próbek trwa trzy doby. Stan próbki po okresie badania oraz odpowiednie wartości wskaźnika \(r\) zestawione są w pracy A. Kidybińskiego (1982).

Znając wytrzymałość skały w stanie powietrznosuchym i chcąc określić w przybliżeniu jej wytrzymałość w warunkach długotrwałego zawilgocenia, mnoży się wytrzymałość powietrznosuchą przez wskaźnik \(r\). Ma on więc znaczenie wskaźnika osłabienia strukturalnego z powodu działania wody.

6.2.5. Badanie ścieralności

Badanie ścieralności na próbkach przygotowanych w postaci kruszywa przeprowadza się według zasad podanych w normie PN-78/B-06714. Metodykę badań ścieralności na tarczy Boehmego określa norma PN-84/B-04111, w bębnie Los Angeles PN-79/B-06714, w dmucha wie piaskowej Mackensena BN-78/8704-14.
6.2.6. Badania pęcznienia skał

Liczbowym kryterium niszczenia skał pęczniących w wyniku zmian wilgotności jest wskaźnik niszczenia wilgotnościowego \(z \) określony wzorem:

\[
z = \frac{\sigma_p}{R_{rw}}
\]

gdzie:

- \(\sigma_p \) — ciśnienie pęcznienia w kierunku równoległym do uławicenia skał,
- \(R_{rw} \) — wytrzymałość na rozciąganie w kierunku prostopadłym do uławicenia dla próbek całkowicie nasyconych wodą.

W zależności od wartości \(z \) wprowadza się klasyfikację skał ze względu na ich podatność na niszczenie w wyniku powtarzających się zmian wilgotnościowych:

- \(0 < z < 0.2 \) — skała słabo niszcząca,
- \(0.2 < z < 0.5 \) — skała średnio niszcząca,
- \(0.5 < z < 0.8 \) — skała szybko niszcząca,
- \(0.8 < z < 1 \) — skała bardzo szybko niszcząca,
- \(z \geq 1 \) — skała wyjątkowo szybko niszcząca.

Wskaźnik ten jest istotny przy ocenie postępu wietrzenia fizycznego skał pęczniących, gdyż proces powtarzających się odkształceń pęcznienia i skurczu jest najistotniejszym czynnikiem wietrzenia fizycznego tych skał.

Uzyskane wyniki badań pozwoliły na ocenę skał ze względu na:

b. Nasiąkliwość, według PN-85/B-04101 (%): bardzo mało nasiąkliwe <0,5, mało nasiąkliwe 0,5–5, średnio nasiąkliwe 5–20, bardzo nasiąkliwe >20.

c. Ścieralność, według PN-84/B-01080.

e. Wytrzymałość na ściskanie, według PN-84/B-04110 i ISO/DIS 14688 (MPa): bardzo słaba \(<1,25 \), słaba 1,25–5, umiarkowana słaba 5–12,5, umiarkowana mocna 12,5–50, mocna 50–100, bardzo mocna 100–200, nadzwyczaj mocna >200.

Podziały skał ze względu na możliwość uzyskiwania poleru, na niszące dziekanie atmosfery przemysłowej, na wskaźnik emulgacji i na promieniowoczość naturalną są zamieszczone w normie PN-84/B-01080. W tej samej normie, w załączniku, przedstawiono orientacyjne zastosowanie różnych skał do różnych rodzajów budownictwa (mostowe i wodne) i drogownictwa (krawężniki, znaki i słupy, kostka i brukowiec) oraz jako kruszywo drogowe.

Wskaźnik porowatości szczelinowej \(K_p \), określający stopień szczelinowości (Niejsztadta), jest zaliczany do klas I–V: I — słaby, \(<2\%\), II — średni, \(2–5\%\), III — silny, \(5–10\%\), IV — bardzo silny, \(10–20\%\), V — wyjątkowo silny, \(>20\%\).
Podziały skał ze względu na: energetyczny wskaźnik urabialności U, energetyczny wskaźnik skłonności do tąpania W_{ET}, opór rozwarstwienia skał stropowych R_{fr}, wskaźnik facjalności stropu w_f, nośność skał spągowych p, są przedstawione w rozdziale D.3.2.

6.3. Badania podłoża i próbek wody

W wodach podziemnych można spotkać około 50 pierwiastków chemicznych. Składniki chemiczne w naturalnych wodach występują w różnych postaciach, jako:
— gazy rozpuszczone,
— substancje znajdujące się w wodzie w postaci jonowej i tworzące roztwory rzeczywiste różnych soli i kwasów,
— substancje koloidalne.

Woda podziemna krążąc w środowisku gruntowym staje się złożonym roztworem charakteryzującym się obecnością gazów, jonów, koloidów, związków organicznych i innych składników. Rodzaje i zakres analiz chemicznych wody zależą od celu i przeznaczenia lub potrzeb (np. konsumpcyjnych, gospodarczych, sanitarnych, przemysłowych). Badania fizycznych i organoleptycznych właściwości oraz składu chemicznego wód regulują odpowiednie przepisy i normy. Badania agresywności wody przeprowadza się zgodnie z tabelą 17.

Przy projektowaniu budowli, doborze rozwiązań materiałowo-konstrukcyjnych i ustalaniu sposobów zabezpieczenia ich przed korozją w różnych konkretnych warunkach środowiskowych wewnętrznych i zewnętrznych stosuje się zasady i kryteria podane w normie PN-80/B-01800.

Rozróżnia się 3 stopnie agresywności: słaby la (dwa podstopnie la1 i la2), średni ma, silny ha.

Stopień, rodzaj i wskaźnik agresywności wskutek fizyczno-chemicznego oddziaływania ciekłych środowisk w zależności od zawartości agresywnych substancji przedstawia tabela 4.

<table>
<thead>
<tr>
<th>Tabela 17</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Agresywność wody</th>
<th>Parametr</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Łagodną (twardość)</td>
<td>T_w</td>
<td>PN-81/C-04554</td>
</tr>
<tr>
<td>Kwasową</td>
<td>H^+</td>
<td>PN-74/C-04540</td>
</tr>
<tr>
<td>Węglanową</td>
<td>aCO_2</td>
<td>PN-81/C-04554</td>
</tr>
<tr>
<td>Magnesową</td>
<td>Mg^{2+}</td>
<td>PN-75/C-04562</td>
</tr>
<tr>
<td>Amonową</td>
<td>NH_4^+</td>
<td>PN-73/C-04576</td>
</tr>
<tr>
<td>Siarczanową</td>
<td>SO_4^{2-}</td>
<td>PN-71/C-04561</td>
</tr>
</tbody>
</table>

Pobieranie próbek według PN-76/C-04620, ocena agresywności według PN-80/B-01800.
normy PN-80/B-01800; dodatkowo wartości graniczne stopnia agresywności gruntów w stosunku do betonu podaje tabela 5 tej normy.

6.4. Badania laboratoryjne materiałów budowlanych

Najczęściej badania gruntów jako materiałów budowlanych przeprowadza się w aspekcie ich przydatności do:
- wbudowywania w nasypy,
- uszczelnienia, na bariery przeciwwfiltracyjne,
- filtry.

Zagadnienie wyboru gruntów nadających się do wbudowania i sposoby ich badania dokładnie przedstawiono w Instrukcji... (1998a; tab. 18). W badaniach laboratoryjnych gruntów, zwłaszcza przy dużej zawartości frakcji ziemiowej i kamienistej, stosuje się odpowiednie cylindry, często specjalne, wielkowymiarowe aparaty (S. Pisarczyk, B. Rymsza, 1988). Stosunek średniej próbki (= aparatu) do wymiaru największych ziarn powinien być nie mniejszy od 5, a wysokość próbki nie mniejsza od jej średnicy.

Zagęszczenie gruntów określa norma PN-88/B-04481 jako stopień zagęszczenia i wskaźnik zagęszczenia.

W celu ustalenia stopnia zagęszczenia należy zbadać wskaźniki porowatości przy najgęstszym ułożeniu (maksymalnym zagęszczeniu) i wskaźniku porowatości przy najołuźniejszym (minimalnym zagęszczeniu) ułożeniu cząstek–ziarn. Wskaźnik zagęszczenia jako stosunek gęstości objętościowej szkieletu gruntu w nasypie do maksymalnej gęstości objętościowej szkieletu gruntu zagęszczonego wymaga badań w aparatach Proctora według określonej metodyki. Do badania zagęszczenia gruntów w nasypach lub w naturalnym podłożu stosuje się badania płyta średnicy powyżej 300 mm lub badania radiometryczne (Instrukcja..., 1998a). Przy przybliżonej ocenie zagęszczenia gruntów można wykorzystać korelacje podane w pracy S. Pisarczyka (1997).

Grunty naturalne i sztuczne wbudowywane w nasypy, poza przedstawionymi wymaganiami (tab. 19, 20), muszą być właściwie zagęszczone. Minimalny wskaźnik zagęszczenia przyjmuje się najczęściej nie mniejszy niż 0,95.

Wilgotność gruntów powinna odpowiadać wilgotności optymalej. W przypadku stosowania gruntów odpadowych, po dokonaniu oceny ich przydatności do wbudowania w nasyp, należy sprawdzić czy nie będą one zagrożeniem dla środowiska. W przypadkach wątpliwych trzeba uzyskać pozwolenie z terenowego organu inspekcji ochrony środowiska. Ocena materiałów budowlanych (gruntów spoistych) jako uszczelnienia inspekcji wymaga przeprowadzenia wielu badań laboratoryjnych, w szczególności w przypadku uszczelnień niebezpiecznych składowisk. W laboratorium na pobranych próbkach przeprowadza się oznaczenia: składu granulometrycznego, zawartości części organicznych, wilgotności, staniu (granic skurczalności, plastyczności, płynności), pęcznienia, zagęszczalności, współczynnika filtracji1, ściśliwości i wytrzymałości na ściganie. Dodatkowo wykonuje się badania składu mineralnego i bada-

1 Badania współczynnika filtracji przeprowadza się w odpowiednich aparatach przy spadku hydraulicznym i = 30.
Przydatność gruntów do wykonywania budowli ziemnych (wg Instrukcji..., 1998a)

<table>
<thead>
<tr>
<th>Przeznaczenie</th>
<th>Przydatne</th>
<th>Przydatne z zastrzeżeniami</th>
<th>Treść zastrzeżenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rozdrobnione grunty skałiste miękkie</td>
<td>gdy porę w gruncie będą wypełnione gruntem lub materiałem drobnornastażnym</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Zwięzelniny i nieszeregi gleiniste</td>
<td>gdy będą wbudowane w miejsca suche lub zabezpieczone od wod gruntowych i powierzchniowych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Piaski płytki, piaski glinikowe, piły piaszczyste i piły</td>
<td>do nasypów nie wyższych niż 3 m, zabezpieczonych przed zawilgoceniem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Piaski próchnicze, z wyjątkiem piąstów piasków próchniczych</td>
<td>w miejscach suchych lub przejściowo zawilgoconych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Gliny piaszczyste, gleiny i gleiny pyłaste oraz inne o (w_2 < 35%)</td>
<td>do nasypów nie wyższych niż 3 m, zabezpieczonych przed zawilgoceniem lub po ulepszeniu spowami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gliny piaszczyste zwięzłe, gleiny zwięzłe i gleiny pyłaste zwięzłe oraz inne gleiny o granicy płynności (w_2 = 35 - 60%)</td>
<td>gdy zwierciadło wody gruntowej znajduje się na głębokości większej od kapilarności biernej gruntu podłoża</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wysieki kamiennie gleiniste o zawartości frakcji ilowej ponad 2%</td>
<td>o ograniczonej podatności na rozpad (łącznie straty masy do 5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Zsąże wielkopiecowe i inne metalurgiczne z nowego studzenia (do 5 lat)</td>
<td>gdy wolne przestrzenie zostaną wypełnione materiałem drobnornastążnym</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Ilotułki przywęglone nieprzepalne</td>
<td>gdy występują w miejscach suchych lub są izolowane od wody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Popioły lotne i mieszanki popiołowo-pułapowe</td>
<td>pod warunkiem ulepszenia tych gruntów spowami (cementem, wapnem, aktywnymi popiołami itp.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na dolne warstwy nasypowych poniżej strefy przemarzania

<table>
<thead>
<tr>
<th>Przeznaczenie</th>
<th>Przydatne</th>
<th>Przydatne z zastrzeżeniami</th>
<th>Treść zastrzeżenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zwiry i pospolki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Piaski głąb i średnie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ilotułki przywęglone nieprzepalne zawierające roniej niż 15% zanier mniej niż 0,075 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Wysieki kamienne o uziarnieniu odpowiadając popiskom i ziarnom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Mieszanki popiołowo-pułapowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wysieki kamienne gleiniste o zawartości frakcji ilowej > 2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Zsąże wielkopiecowe i inne metalurgiczne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Piaski drobne</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na górne warstwy nasypowych w strefie przemarzania

<table>
<thead>
<tr>
<th>Przeznaczenie</th>
<th>Przydatne</th>
<th>Przydatne z zastrzeżeniami</th>
<th>Treść zastrzeżenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zwiry i pospolki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Piaski głąb i średnie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ilotułki przywęglone nieprzepalne zawierające ronniej niż 15% zanier mniej niż 0,075 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Wysieki kamienne o uziarnieniu odpowiadając popiskom i ziarnom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Mieszanki popiołowo-pułapowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wysieki kamienne gleiniste o zawartości frakcji ilowej > 2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Zsąże wielkopiecowe i inne metalurgiczne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Piaski drobne</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W wykopach i miejscach zewnętrznych do głębokości przemarzania

<table>
<thead>
<tr>
<th>Przeznaczenie</th>
<th>Przydatne</th>
<th>Przydatne z zastrzeżeniami</th>
<th>Treść zastrzeżenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunty niewysadzinowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grunty wątpliwe i wysadzinowe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 19

Podział gruntów pod względem wysadzinowości (wg Instrukcji..., 1998a)

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Niewysadzinowe</th>
<th>Wątpliwe</th>
<th>Wysadzinowe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupy gruntów</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niewysadzinowe</td>
<td>Wątpliwe</td>
<td>Wysadzinowe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>żwir niesklasty</td>
<td>piasek gliniasty</td>
<td>mało wysadzinowe:</td>
</tr>
<tr>
<td></td>
<td>pospolity</td>
<td>piasek piasty</td>
<td>glina piaszczysta zwięła</td>
</tr>
<tr>
<td></td>
<td>piasek piasty</td>
<td>piasek gliniasty</td>
<td>glinazwięża</td>
</tr>
<tr>
<td></td>
<td>piasek piasty</td>
<td>żwir gliniasty</td>
<td>glina płyta zwięła</td>
</tr>
<tr>
<td></td>
<td>piasek piasty</td>
<td>pospolita glina</td>
<td>bardzo wysadzinowe:</td>
</tr>
<tr>
<td></td>
<td>piasek gliniasty</td>
<td>piłka płyta</td>
<td>piasek gliniasty</td>
</tr>
<tr>
<td></td>
<td>żwir gliniasty</td>
<td>piłka płyta</td>
<td>piasek gliniasty</td>
</tr>
<tr>
<td></td>
<td>piasek struny</td>
<td>glina piaszczysta</td>
<td>piłka płyta</td>
</tr>
<tr>
<td></td>
<td>piłka płyta</td>
<td>glina piaszczysta</td>
<td>piłka płyta</td>
</tr>
<tr>
<td></td>
<td>glina płyta</td>
<td>glina piaszczysta</td>
<td>piłka płyta</td>
</tr>
<tr>
<td></td>
<td>glina płyta</td>
<td>glina piaszczysta</td>
<td>piłka płyta</td>
</tr>
<tr>
<td></td>
<td>glina płyta</td>
<td>il warowny</td>
<td>piłka płyta</td>
</tr>
<tr>
<td>Zawartość cząstek</td>
<td>≤0,075 mm</td>
<td>≤0,02 mm</td>
<td>≤0,02 mm</td>
</tr>
<tr>
<td>wg PN-88/B-04481 (%)</td>
<td>< 13</td>
<td>15–30</td>
<td>> 30</td>
</tr>
<tr>
<td>Kapilarność bierne Hh,</td>
<td>< 1,0</td>
<td>≥ 1,0</td>
<td>> 1,0</td>
</tr>
<tr>
<td>wg PN-60/B-04493 (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wskaźnik piaskowy WP</td>
<td>> 35</td>
<td>25–35</td>
<td>< 25</td>
</tr>
<tr>
<td>wg BN-64/8931-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 20

Właściwości mieszanych popiołowo-żużlowych do budowy nasypów (wg Instrukcji..., 1998a)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Wyszczególnienie cech</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uziemienie wg PN-88/B-04481 (%): zmiennosć frakcji piaskowo-ziemnej (%)</td>
<td>≥ 35</td>
</tr>
<tr>
<td></td>
<td>zawartość ziarn poniżej 0,075 mm (%)</td>
<td>≤ 75</td>
</tr>
<tr>
<td>2</td>
<td>Zawartość niespalonego węgla (%)</td>
<td>≤ 10</td>
</tr>
<tr>
<td>3</td>
<td>Maksymalna gęstość objętościowa szkieletu po zagęszczeniu w aparacie Proctora wg metody I wg PN-88/B-04481 (g/cm³)</td>
<td>≥ 1,0</td>
</tr>
<tr>
<td>4</td>
<td>Wskaźnik nośności po 4 dobach nasycenia wody wg BN-70/8931-05 (%)</td>
<td>≥ 10</td>
</tr>
<tr>
<td>5</td>
<td>Pęcznienie liniowe materiału wg BN-70/8931-05 (%) bez obciążenia</td>
<td>≤ 2,0</td>
</tr>
<tr>
<td></td>
<td>z obciążeniem 0,003 MPa</td>
<td>≤ 0,5</td>
</tr>
<tr>
<td>6</td>
<td>Kał tarcia wewnętrznej wg PN-88/B-04481 (%)</td>
<td>≥ 20</td>
</tr>
<tr>
<td>7</td>
<td>Kapilarność bierne wg PN-60/B-04493 (m)</td>
<td>≤ 2,0</td>
</tr>
<tr>
<td>8</td>
<td>Zawartość siarczanów (w przeliczeniu na SO₃) (%)</td>
<td>≤ 3,0</td>
</tr>
</tbody>
</table>

Cechy od 1 do 5 stanowią wymagania podstawowe, natomiast od 6 do 8 uzupełniające.
nia chemiczne. Badania chemiczne wykonuje się często w przypadku oznaczeń składu wody zanieczyszczonej (skażonej), przesaczającą się przez próbki gruntu.

Podstawowym kryterium oceny podłoża do wyboru lokalizacji składowiska odpadów jest przepuszczalność gruntów tworzących i ich miąższość oraz położenie zwierciadła wody. Według S. Witzaka i A. Adamczyka (Katalog..., 1994) przyjmuje się warstwę gruntową jako:
— słabo izolującą, gdy współczynnik filtracji wynosi $10^{-8}–10^{-10}$ m/s,
— średnio i dobrze izolującą, gdy współczynnik filtracji wynosi $10^{-10}–10^{-12}$ m/s,
— bardzo dobrze izolującą, gdy współczynnik filtracji wynosi $<10^{-12}$ m/s.

Często występuje, że grunty w podłożu mają odpowiednią miąższość (najlżej powyżej 3 m) i charakteryzują się współczynnikiem filtracji poniżej 10^{-3} m/s.

Grunty stosowane do uszczelnień mineralnych są badane w podobnym zakresie, jak grunty w naturalnych uszczelnieniach, przy czym szczególna uwaga powinna być zwrócona na badania parametrów zagęszczalności: wilgotność optymalną i maksymalną gęstość objętościową szkieletu gruntowego.

Według instrukcji ITB (Projektowanie..., 1996) grunty na przesłony filtracyjne powinny charakteryzować się parametrami:
— zawartością cząstek ilastych powyżej 20%, a 60% gruntu powinno być drobniejsze od 0,05 mm,
— wskaźnikiem plastyczności >20%,
— granicą płynności >30%,
— zawartością węglanu wapnia <10%,
— zawartością substancji organicznej <2%.

7. BADANIA HYDROGEOLOGICZNE

7.1. Pomiary wód podziemnych i metodyka ich opróbowania

Pomiary zwierciadła wody podziemnej należy prowadzić w studniach oraz wszystkich wyrobiskach geologicznych. Po dotarciu do warstwy wodonośnej należy dokładnie określić poziom zwierciadła wody podziemnej, jego głębokość od powierzchni terenu oraz rządne.

W otworach wiertniczych pomiary zwierciadła wody są najbardziej utrudnione. Po nawiercieniu warstwy wodonośnej należy otwory pogłębić o około 0,5–1,0 m i przerwać wiercenie, oczyścić dno otworu, podciągnąć rury osłonowe o około 0,5 m i przeprowadzić pomiary stabilizacyjne (tzw. stójkę) zwierciadła wody podziemnej w otworze. Stabilizację można uznać za zakończoną, gdy kolejne wykonane w odstępach kilkunastominutowych (do 30 min) pomiary różnią się o 2–3 cm. Wykres stabilizacji zwierciadła wody zależnie od przebiegu krzywej daje informacje o współczynniku filtracji i odszczelności gruntów.

W przypadku występowania gruntów z kilkoma poziomami wodonośnymi obserwacje i pomiary zwierciadła wody wykonuje się osobno dla każdej kolejno nawierczonej warstwy. Konieczne jest przy tym dobre izolowanie poszczególnych warstw. Gdy zwierciadło wody jest napięte, za poziom nawierczenia zwierciadła przyjmuje się spąd warstwy napinającej, natomiast poziom piezometryczny odpowiada najwyższe poziomowi zwierciadła ustalonnemu w czasie stójki.
Z analizy pomiarów stabilizacji zwierciadła wody w poszczególnych warstwach wodonośnych i układania się poziomów piezometrycznych, można wnioskować o związkach hydraulicznych między poszczególnymi poziomami wodonośnymi. W przypadkach wątpliwych należy wykonać przekroje geologiczno-inżynierskie, a w sytuacjach bardziej złożonych przeprowadzić dodatkowe pomiary specjalne metodami: kolorymetryczną, elektrolityczną lub potencjału elektrycznego i innymi.

Pomiary we wkopach odkrywki fundamentowych wykonuje się w sposób podobny jak w otworach. W celu ułatwienia pomiaru stabilizacji zwierciadła wody należy dno wkopu pogłębić o 10–20 cm poniżej poziomu napotkanej warstwy wodonośnej. Pomiary zwierciadła wody gruntowej mogą być prowadzone jako doraźne, w związku z prowadzeniem określonych badań geologiczno-inżynierskich, i jako stacjonarne ze względu na specyficzne potrzeby inwestycji.

W celu scharakteryzowania dynamiki wód na badanym obszarze pomiary zwierciadła wody mogą być powtarzane w studniach i piezometrach w równych, odpowiednio dobranych okresach roku hydrologicznego. Dla celów geologiczno-inżynierskich szczególnie istotne są również rejestracje przejawów wód gruntowych.

Pomiary zwierciadła wody i jego wahania powinny być wykonywane niezawodnymi przyrządami. Do pomiarów doraźnych należy stosować tzw. świstawkę, do pomiarów stacjonarnych np. limnometr lub limnigraf.

Wyniki pomiarów należy zapisywać na formularzach stanowiących dokumentację badań. Formułarz powinien zawierać dane dotyczące:
— lokalizacji i charakteru punktu pomiarowego,
— użytkownika w przypadku studni,
— daty i godziny pomiaru,
— stanu pogody,
— głębokości do zwierciadła wody,
— głębokości do dna studni lub wyrobiska,
— miąższości warstwy wody,
— profilu geologicznego studni lub wyrobiska,
— możliwych do uzyskania danych o wahaniach zwierciadła wody, wydajności ujęcia, chemizmie, zanieczyszczeniu,
— innych danych z wywiadu przeprowadzonego z użytkownikiem w przypadku studni.

Od wielu lat bardzo rozpowszechniony jest problem właściwego poboru wód podziemnych do dalszych analiz fizyczno-chemicznych. W ostatnim dziesięcioleciu powstało wiele publikacji, które przybliżają tę problematykę, a także poprzez określone normatywy wskazują, jak właściwie należy postępować podczas prac polowych i laboratoryjnych. Szczegółowe zapoznanie się z wytycznymi polskich norm (PN-87/C-04632/01-02; PN-88/C-04632/03; PN-88/C-04632/04), czy z opisem metod poboru wód podziemnych, ich przechowywania i analiz zgodnie z Katalogiem... (1995), pozwala ustrzec się błędów i właściwie wykonać, niemalże najważniejszą część prac, wstęp do dalszej analizy wód.

Przed przystąpieniem do pobierania próbek należy najpierw wyraźnie określić cel zamierzonych badań, on bowiem decyduje o lokalizacji miejsc i punktów poboru. Wpływa on na technikę pobierania, sposób postępowania z pobranymi próbami oraz wybór metody analizy. Istotną sprawą jest pobranie próbek reprezentatywnych, odzwierciedlających rzeczywisty skład wód podziemnych w miejscu ich pobrania. Dlatego w fazie wstępnej należy szczegółowo rozpoznać sytuację hydrogeologiczną badanego obszaru poprzez przegląd materiałów archiwalnych. Następnie należy wytypować miejsca poboru z istniejących już studni wierconych, kopanych, pie-
zometrów, otworów badawczych i drenażowych, a w przypadku ich braku zainstalować nowe, pamiętając by zostały właściwie wykonane (z materiałów obojętnych nie wpływających na zmiany chemizmu wód) oraz oczyścić przez przeprowadzenie pompowania oczyszczającego.

Wody podziemne można pobierać również w miejscach ich przejawów na powierzchni terenu: ze źródeł, wypływów i wycieków w wyrobiskach kopalnianych, rowach melioracyjnych.

Duży wpływ na jakość pobieranych wód podziemnych ma stan wymienionych punktów, dlatego należy uprzednio sprawdzić je i przeprowadzić wywiad, z jakich materiałów zostały wykonane, jaką metodą i czy są eksploatowane. Nie można bezpośrednio pobierać wody ze studni, piezometrów i innych otworów rzadko używanych, bądź nie eksploatowanych, ponieważ znajduje się w nich woda o zmienionym składzie, innym niż woda złożowa. Na zmiany chemizmu wody w otworze wpływ mogą mieć: obudowa studni, zmiany parametrów fizyczno-chemicznych, zachodzące procesy chemiczne w stagnującej wodzie, kontaminacja składników z zewnątrz.

W celu właściwego pobrania wody normy zalecają przeprowadzić pompowanie oczyszczające, zapewniające co najmniej dwukrotną wymianę słupek wody w studniach wierconych i piezometrach, a dla studni kopań jednorazowe wybranie wody. Pompowanie wody z otworów wykonuje się pompami głębinowymi bądź powierzchniowymi, jeżeli są zainstalowane przy studni. W innych przypadkach jest wymagane posiadanie własnych pomp elektrycznych lub ręcznych, których użycie jest zależne od głębokości studni i wysokości podnoszenia słupek wody.

Pobór wód zarówno z strefy saturacji, jak i strefy aeracji można wykonywać specjalistycznymi sondami, np.: typu BAT, oraz wód przesiąkowych w strefie nienasyconej za pomocą lizymetrów (próbków podciętnych).

W trakcie pompowania wody bezpośrednio na wypływie należy przeprowadzić pomiary wskaźnikowe: pH, Eh, przewodnictwa elektrycznego oraz zależnie od potrzeb — pomiary zawartości gazów i innych składników lotnych w naczyniach przepływowych specjalnie do tego celu przystosowanych.

Pobór wód należy przeprowadzić za pomocą obojętnych chemicznie przewodów (polietyleneowych lub teflonoowych) wprost do butelek, wypełniając je po brzegi i szczelnie zakręcając (tak aby nie pozostały pęcherzyki powietrza). Technika pobierania oraz odpowiedni rodzaj naczyń są zależne od potrzeb — pomiary zawartości gazów i innych składników lotnych w naczyniach przepływowych specjalnie do tego celu przystosowanych.

Pobór wód należy przeprowadzić za pomocą obojętnych chemicznie przewodów (polietyleneowych lub teflonoowych) wprost do butelek, wypełniając je po brzegi i szczelnie zakręcając (tak aby nie pozostały pęcherzyki powietrza). Technika pobierania oraz odpowiedni rodzaj naczyń są zależne od potrzeb — pomiary zawartości gazów i innych składników lotnych w naczyniach przepływowych specjalnie do tego celu przystosowanych.

Pobór wód należy przeprowadzić za pomocą obojętnych chemicznie przewodów (polietyleneowych lub teflonoowych) wprost do butelek, wypełniając je po brzegi i szczelnie zakręcając (tak aby nie pozostały pęcherzyki powietrza). Technika pobierania oraz odpowiedni rodzaj naczyń są zależne od potrzeb — pomiary zawartości gazów i innych składników lotnych w naczyniach przepływowych specjalnie do tego celu przystosowanych.
7.2. Badania współczynnika filtracji

W literaturze do opisania właściwości filtracyjnych skał i gruntów używa się rozmaitych określeń: przepuszczalne, słabo przepuszczalne ze stopniowaniem, półprzepuszczalne, trudno przepuszczalne, praktycznie nieprzepuszczalne i nieprzepuszczalne, dobrze przesycające, słabo przesycające i inne.

Problem oceny właściwości filtracyjnych skał i gruntów jest o tyle skomplikowany, że inaczej przedstawiają się zagadnienia przy filtracji poziomej, a inaczej przy filtracji pionowej. Od cech strukturalnych gruntów zależy również wielkość filtracji, a także metodyka badań. Ogólnie według Z. Pazdry i B. Kożerskiego (1990) grunty dzieli się na półprzepuszczalne o wartości współczynnika filtracji $k \geq 10^{-6} \text{ m/s}$ oraz na grunty od słabo do bardzo dobrze przepuszczalnych.

Badania polowe współczynnika filtracji dla gruntów półprzepuszczalnych są metodycznie bardziej skomplikowane. Stosowane są tu badania w piezometrze, w cylindrze oraz metodą BAT.

Dwie pierwsze metody opracowano w instrukcji (Instrukcja..., 1998b) wydanej w Uniwersytecie im. A. Mickiewicza w Poznaniu (M. Marciniak, J. Przybyłek, J. Herzig, J. Szczepańska). We wszystkich przypadkach jest wymagana specjalistyczna aparatura, np. na piezometrycznym stanowisku badawczym poza samą konstrukcją piezometru konieczne jest urządzenie do załataania wody, urządzenie do uszczelniania piezometru i zainicjowania ruchu wody, manometr, kompresor, komputer, aparatura do rejestracji ruchu zwierciadła wody, sonda poziomow-skazowa, depresjometr, zasilanie.

Obliczanie współczynnika filtracji można przeprowadzić przez załatanie wody w piezometrze, poprzez sprężanie powietrza, jak i swobodnego wzniesienia powietrza na poziomie powierzchniowym.

Badania w cylindrze służą do oznaczania współczynnika filtracji gruntów przypowierzchniowych (gliny, mułu, iły). Cylinder w tej metodzie stanowi rura stalowa, średnicy ok. 50 mm i długości 1,0 m. Cylinder ten wprowadza się w grunt, wykonując uprzednio wykop do głębokości około 0,50 m. Istotnym elementem w tej metodzie jest urządzenie do załataania wody w cylindrze oraz czujnik do pomiaru poziomu wody.

System BAT może być wykorzystywany ze względu konstrukcyjnych do badań filtracji dla gruntów, których współczynnik filtracji jest mniejszy niż 10^{-5} m/s. Sprzęt wchodzący w skład systemu umożliwia dodatkowo pobór próbek wód podziemnych i pomiaru ciśnienia porowego.

Metody polewne badania współczynnika filtracji gruntów przepuszczalnych należy uznać za najbardziej wiarygodne i, choć kosztowniejsze, dają pewniejsze rozcewanie przepuszczalności.

 Za najdokładniejsze metody oceny współczynnika filtracji uznaje się pompowanie hydrowęzlowe, pomiary piezometryczne i presjopermeametryczne, zalewanie otworów i wkopów w utworach przysowierzchniowych.

Oznaczanie współczynnika filtracji metodą pompowania otworów przeprowadza się w odpowiednio wykonanym otworze i dobranym filtrze, zależącym od granulometrii warstwy wo-
donośnej lub jej szczelinowatości. Ustalenie dopuszczalnej przepustowości filtra pozwala na właściwy jego wybór. Sposób prowadzenia pompowania określają odpowiednie instrukcje. Wartość współczynnika filtracji określa się ze wzoru zależnie od charakteru otworu hydrogeologicznego (zupełny, niezupełny), stanu napięcia zwierciadła wody (zwierciadło swobodne, napięte). W skomplikowanych warunkach hydrogeologicznych, o nie ustalonym przepływie wody, stosuje się pompowanie otworów, przy jednoczesnym pomiarze zwierciadła wody w otworze obserwacyjnym. Metoda ta jest oparta na teorii ruchu nieustalonego, opracowanej przez C.V. Theisa.

Oznaczanie współczynnika filtracji metodą zalewania otworów teoretycznie opracowali H. Maag i J. Kozeny. Metoda ta, rozwinęta przez kolejnych badaczy, pozwala na uzyskiwanie dość wiarygodnych wyników.

Oznaczanie współczynnika filtracji metodą zalewania wkopów wykorzystuje zjawisko chłonności gruntów. Wśród nich należy wymienić metodę Porscheta, Baldyryewa, Kamieńskiego, Niestierowa i Maaga. Metody te są stosowane głównie do oceny infiltracji wody opadowej w strefie aeracji.

8. PRACE GEOLOGICZNO-INŻYNIERSKIE W CELU OCENY ODDZIAŁYWANIA NA ŚRODOWISKO

Potrzeba prowadzenia badań pod kątem oceny stanu środowiska geologicznego i wpływu na to środowisko inwestycji lub istniejących obiektów wynika z:

— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 14 lipca 1998 r. w sprawie określenia inwestycji szczególnie szkodliwych dla środowiska i zdrowia ludzi oraz mogących pogorszyć stan środowiska oraz wymagań, jakim powinny odpowiadać oceny oddziaływania na środowisko tych inwestycji,

— Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 14 lipca 1998 r. w sprawie wymagań, jakim powinny odpowiadać oceny oddziaływania na środowisko inwestycji nie zaliczonych do szczególnie szkodliwych dla środowiska i zdrowia ludzi albo mogących pogorszyć stan środowiska, obiektów oraz robót zmieniających stosunki wodne.

Studia lub badania geologiczno-inżynierskie należy również prowadzić w celu ustalenia prognozy skutków wpływu ustaleń miejscowego planu zagospodarowania przestrzennego na środowisko przyrodnicze, w nawiązaniu do Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 9 marca 1995 r., wydanego na podstawie art. 40 ust. 5 p. 2a Ustawy o zagospodarowaniu przestrzennym z dnia 7 lipca 1994 r. W myśl Rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 14 lipca 1998 r., oceny oddziaływania na środowisko powinny być wykonywane zgodnie z przyjętym podziałem dla:

— inwestycji i obiektów szczególnie szkodliwych dla środowiska i zdrowia ludzi,
— inwestycji i obiektów mogących pogorszyć stan środowiska i zdrowie ludzi,
— inwestycji i obiektów nie zaliczonych do szczególnie szkodliwych albo mogących pogorszyć stan środowiska, obiektów oraz robót zmieniających stosunki wodne zgodnie z art. 70 ust. 1, 2, 3 Ustawy z 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska z późniejszymi zmianami.

O znaczeniu badań warunków geologiczno-inżynierskich dla obiektów szczególnie szkodliwych dla środowiska przyrodniczego niech świadczy fakt, że zgodnie z rozporządzeniem do tej grupy zaliczono takie inwestycje i obiekty jak:
— rafinerie ropy naftowej,
— instalacje gazfykacji i upłynniania węgla,
— elektrownie i elektrociepłownie o mocy co najmniej 300 MW,
— huty,
— autostrady i drogi ekspresowe,
— porty lotnicze o długości pasa startowego powyżej 2100 m,
— rurociągi do przesyłu ropy naftowej i produktów ropopochodnych długości powyżej 40 km i średnicy 800 mm,
— zbiorniki wodne o pojemności większej niż 10 mln m³ oraz zapory wodne o wysokości piętrzenia powyżej 8,0 m.

Podobnie inwestycje zaliczane do mogących pogorszyć stan środowiska stwarzają złożone problemy badawcze geologiczno-inżynierskie. Świadczą o tym przykładowo wybrane inwestycje i obiekty tej grupy:
— odkrywkowe zakłady górnicze o powierzchni odkrywki powyżej 25 ha, z wyłączeniem wydobycia piasku i węgla w ilości mniejszej od 25 tys. m³/rok,
— składowiska,
— zakłady wzbogacania węgla,
— elektrownie wodne o wysokości spadu powyżej 3,0 m, a na terenach chronionych wszystkie elektrownie wodne,
— wały ochronne, nabrzeża, pirsy i inne konstrukcje ochronne zmieniające linię nabrzeża morskiego,
— stacje paliw płynnych z wyłączeniem stacji gazu (propan, butan),
— drogi krajowe i wojewódzkie,
— koksownie i cementownie,
— powierzchnie handlowe o powierzchni powyżej 3 ha i wiele innych.

Badania geologiczno-inżynierskie prowadzone dla wymienionych grup inwestycji i obiektów muszą mieć szczególny charakter tak ze względu na problematykę badawczą i zakres prac, jak i na sposób przedstawiania wyników. Prace geologiczno-inżynierskie, poza określającymi warunki posadowienia obiektów lub jego modernizacji oraz prognozy wpływu na środowisko geologiczne, powinny umożliwiać dokonanie oceny wpływu tego obiektu na środowisko przyrodnicze na etapie budowy, eksploatacji i likwidacji. Powinny więc zawierać niezbędne dane:
— dotyczące stanu środowiska,
— oceny oddziaływania inwestycji lub obiektu na środowisko,
— minimalizacji skutków tego oddziaływania.

Szczególnie istotne w badaniach geologiczno-inżynierskich jest uwzględnianie w szerszym niż dotychczas zakresie oddziaływań inwestycji lub obiektów w trakcie ich eksploatacji lub likwidacji, a także dla sytuacji awaryjnych, co jest wyjątkowo istotne przy obiektach szczególnie szkodliwych dla środowiska i zdrowia ludzi.
Dokumentowanie warunków geologiczno-inżynierskich inwestycji, dla których wymagane jest sporządzanie ocen oddziaływania na środowisko może odbywać się:
— rozdzielnie, niezależnie od wykonywanej oceny,
— kompleksowo, łącznie z oceną,
— w szczególnych przypadkach na potrzeby oceny oddziaływania na środowisko (OOŚ).

We wszystkich przypadkach postępowanie przy projektowaniu, dokumentowaniu i zatwierdzaniu określa prawo geologiczne i górnicze i rozporządzenia wykonawcze. Wynika z tego, że w każdym przypadku zgodnie z prawem, w celu przeprowadzenia prac geologicznych związanych z wykonywaniem robót geologicznych, konieczne jest wykonanie i zatwierdzenie projektu prac geologicznych oraz zatwierdzenie wykonanej dokumentacji geologiczno-inżynierskiej.

Cele badań geologiczno-inżynierskich dla obiektów wymagających sporządzenia OOŚ są zróżnicowane i zależą nie tylko od warunków geologicznych terenu, ale i od szczególnej roli obiektów w środowisku. Problematykę badawczą należy określić indywidualnie dla każdego obiektu, uwzględniając przyjęte rozwiązania technologiczne, rodzaj i zasięg uciążliwości dla środowiska, usytuowanie w stosunku do obszarów prawnie chronionych.

W niniejszym poradniku, uwzględniając zróżnicowanie obiektów, trudno przestawić kompleksowo cele i sposoby ich rozwiązywania. Wskazuję jednak należy szczególnie istotne zagadnienia przy sporządzaniu OOŚ:
— Zmienność właściwości gruntów podłoża w trakcie budowy, eksploatacji i likwidacji inwestycji, np. zmiany w podłożu związane z odwadnianiem terenu, wzmacnianie podłoża na skutek oddziaływania obiektu.
— Wahania i zmiany dynamiki wód w trakcie budowy, eksploatacji i likwidacji obiektu: długotrwałe i krótkotrwałe, np. krótkotrwałe obniżenie zwierciadła wody związane z wykonywaniem wykopu fundamentowego, obniżanie zwierciadła wody w wyniku działania drenażu opaskowego wokół budynku.
— Oszacowanie przewidywanych oddziaływań budowli na środowisko geologiczne, a przede wszystkim podłoże: bezpośrednie, pośrednie, krótkotrwałe, odwracalne, nieodwracalne, np. osiadanie powierzchni terenu w wyniku długotrwałych odvodnień, wykonywanie ścianek szczelino-wych zmieniających nieodwracalnie stosunki wodne.
— Możliwość i sposób korzystania inwestycji ze środowiska geologicznego: zaopatrzenie w wodę, kopaliny i surowce budowlane, odprowadzanie ścieków, zagospodarowanie odpadów, wykorzystanie gruntów antropogenicznych, np. określanie warunków zaopatrzenia inwestycji w wodę podziemną, określenie zasobów i chemizmu wód, wykorzystanie gruntów antropogenicznych do budowy obwałowań, lub jako podłoże budowli.
— Składowanie odpadów w zwalach i stawach osadowych.
— Przemiany hydrochemiczne wód podziemnych.
— Zanieczyszczenia chemiczne gleb i gruntów w strefie aeracji, np. ocena wpływu zanieczyszczeń chemicznych terenu na warunki zabudowy.
— Monitoring lokalny środowiska, np. założenie w trakcie badań geologiczno-inżynierskich systemu monitoringu wód i kontynuacja badań dla celów oceny (OOŚ) i w trakcie eksploatacji obiektu.
— Określenie uwarunkowań dla obiektu w trakcie budowy, eksploatacji i likwidacji obiektu ze względu na obszary chronione, np. zlokalizowanie obiektu w strefie ochrony pośredniej zewnętrznej ujścia wody lub budowa osiedla mieszkaniowego w otulinie parku narodowego.
— Zjawiska i procesy geodynamiczne, a w szczególności osuwiska, deformacje filtracyjne i inne naturalne i antropogeniczne, np. podcinanie naturalnych zboczy, zwiększenie spadku hydraulicznego przy podwyższaniu składowisk mokrych.

— Prognoza zmian warunków geologiczno-inżynierskich w wyniku budowy i eksploatacji obiektów budowlanych.

Przedstawione wybrane zagadnienia i podane skrótowo przykłady powinny być tak przedstawione i opracowane, aby mogły stanowić podstawę oceny stanu środowiska geologicznego przed wykonaniem obiektu oraz określić ocenę oddziaływania obiektu na środowisko przyrodnicze i umożliwić określenie kierunków działań w celu minimalizacji oddziaływania obiektu na środowisko. Prognoza skutków wpływu miejscowego planu zagospodarowania przestrzennego na środowisko ze względu na stawiane wymagania powinna uwzględniać:

— określenie skutków wpływu realizacji projektu miejscowego na elementy środowiska przyrodniczego, w tym geologicznego,

— przedstawienie rozwiązania eliminującego lub ograniczającego negatywne wpływy na środowisko, które mogą wynikać z ustaleń zawartych w miejscowym planie zagospodarowania przestrzennego,

— określenie stanu środowiska przyrodniczego i jego odporności na degradację oraz regenerację,

— ocenę skutków realizacji miejscowego planu na obszarach chronionych,

— ocenę proponowanych w projekcie szczególnych warunków zagospodarowania terenu, wynikających z potrzeb ochrony środowiska, prawidłowego gospodarowania zasobami przyrodą oraz ochrony gruntów rolnych i leśnych.

W związku z tym, że środowisko geologiczne w sposób istotny wpływa na warunki przestrzennego zagospodarowania terenu, w prognozie należy uwzględnić wszystkie jego elementy, szczególnie dotyczące uwarunkowanych pod względem geologicznym kierunków zagospodarowania przestrzennego gminy, wyróżniających się:

— waloryzacją geologiczno-inżynierską terenu,

— dokumentowaniem i zagospodarowaniem złóż kopalń, w tym złóż materiałów budowlanych,

— występowaniem wód podziemnych i ich ochroną oraz ochroną istniejących i projektowanych ujęć wód podziemnych,

— oceną oddziaływania na środowisko obiektów istniejących i projektowanych inwestycji oraz infrastruktury.

Charakterystyka warunków geologicznych przy prognozowaniu skutków wpływu ustaleń miejscowego planu zagospodarowania przestrzennego powinna być oparta głównie na materiałach archiwalnych, opracowaniach studialnych i opracowaniach monograficznych.

Elementy dotyczące środowiska geologicznego, jak i cała prognoza, powinny być opracowywane jednocześnie ze sporządzeniem projektu miejscowego planu zagospodarowania przestrzennego.

Zakres badań, dokładność rozpoznania warunków geologiczno-inżynierskich, jak i samych ocen, jest zależna od celów i etapów procesu inwestycyjnego. W świetle obowiązujących przepisów aspekty ochrony środowiska muszą być uwzględnione przy wydawaniu:

— decyzji o udzieleniu koncesji na eksploatację i dokumentowanie złóż zgodnie z prawem geologicznym i górniczym,
— decyzji o warunkach zabudowy i zagospodarowania terenu,
— pozwoleń na budowę,
— pozwoleń na użytkowanie obiektu budowlanego,
— decyzji o ustaleniach lokalizacyjnych dla autostrad.

9. PRACE DOKUMENTACYJNO-ZESTAWCZE

Liczba etapów dokumentowania zależy od typu budownictwa, potrzeb projektowych, wielkości obiektu, kategorii geotechnicznej obiektów budowlanych oraz stopnia złożoności budowy geologicznej. Etapy projektowania ustala inwestor i biuro projektowe w porozumieniu z wykonawcą badań geologiczno-inżynierskich.

Dla dużych budowli, np. stopnie wodne, elektrownie, autostrady, dokumentacje geologiczno-inżynierskie można wykonać na zlecenie inwestora dla:
- a) wyboru lokalizacji — faza badań rozpoznawczych,
- b) planowania inwestycji — studium geologiczno-inżynierskie,
- c) projektowania — dokumentacja geologiczno-inżynierska,
- d) realizacji — dokumentacja uzupełniająca,
- e) eksploatacji — monitoring geologiczno-inżynierski.

W dokumentacji geologiczno-inżynierskiej wyniki badań podłoża i terenu budowlanego zestawia się zgodnie z rozporządzeniem jak w rozdziale A.1.1 w dwóch rodzajach dokumentacji:
- a) dokumentacji geologiczno-inżynierskiej (pełnej),
- b) dokumentacji geologiczno-inżynierskiej uproszczonej.

Dokładność badań geologiczno-inżynierskich obejmujących roboty geologiczne, badania terenowe i laboratoryjne powinna być w racjonalny sposób dostosowana do postulatów inwestora, a same roboty i badania geologiczno-inżynierskie należy wykonać według obowiązujących norm, wytycznych, zasad zawodowych i naukowych.

Dokumentacja geologiczno-inżynierska składa się z 3. części:
- I — tekstowej,
- II — załączników tabelarycznych,
- III — załączników graficznych.

Tekst zawiera:
- a. Zakres badań przewidzianych w zatwierdzonym projekcie prac geologicznych; nazwę organu zatwierdzającego; datę zatwierdzienia; przewidywany w projekcie harmonogram i współzależność badań.
- b. Charakterystykę inwestycji (z projektu prac geologicznych z ewentualnymi uzupełnieniami lub zmianami).
- c. Opis zachowania się i stanu obiektów budowlanych na terenie budowy i w jego sąsiedztwie.
- d. Analizę prawidłowości wykonanych badań, przyczyny ewentualnego odstępstwa od projektu i zakres badań dodatkowych.
e. Krótką charakterystykę geomorfologiczną, z omówieniem znaczenia dla inwestycji obszarów podmokłości i tarasów zalewowych oraz określeniem granic obszaru zagrożonego okresowymi podtopieniami lub zalaniem.

f. Opis budowy geologicznej obejmujący:
 — zespoły litogenetyczne na tle ogólnego podziału stratygraficznego, uwzględniające wydzielenia warstw geotechnicznych,
 — zjawiska i procesy tektoniczne, o ile mają związek z oceną budowlaną podłoża,
 — procesy i formy geodynamiczne uspokojone, czynne i przewidywane na badanym terenie, z oceną wpływu tych procesów na planowane inwestycje,
 — określenie stopnia złożoności budowy geologicznej podłoża.

g. Charakterystykę warunków wodnych obejmującą:
 — opis poziomów wód podziemnych,
 — określenie stanów maksymalnych i minimalnych, amplitudy wahań i ewentualnie czasów trwania,
 — omówienie jakości wód z uwzględnieniem agresywności korozjnej na beton i stal,
 — opis niekorzystnego wpływu wód powierzchniowych i opadowych na projektowany obiekt,
 — określenie wpływu projektowanego obiektu na poziomy wód użytkowych, możliwość zapotrzebowania obiektu w wodę i odprowadzenie ścieków i wód opadowych.

h. Charakterystykę geologiczno-inżynierską, która obejmuje:
 — opis serii geologiczno-inżynierskich nawiązujący do układu wydzielen zespółów litogenetycznych, łącznie z ich charakterystyką i parametrami fizyczno-mechanicznymi koniecznymi do projektowania,
 — ocenę wielkości zaburzeń tektonicznych, szczególnie form glacitektonicznych, jeśli występują na danym terenie,
 — ocenę paleo- i współczesnych procesów geodynamicznych mogących stanowić zagrożenie dla inwestycji,
 — prognozę wpływu inwestycji na środowisko.

i. Zasoby złóż kopalnych (oszacowanie na podstawie danych archiwalnych), jeśli mają być wykorzystane do realizacji inwestycji.

j. Wnioski geologiczno-inżynierskie dla rozpatrywanej inwestycji.

k. Wnioski zawierające:
 — stwierdzenie, czy rozpoznanie warunków geologiczno-inżynierskich jest zgodne z projektowaną dokładnością i w przewidywanym zakresie merytorycznym lub określenie rozbieżności w tym zakresie,
 — omówienie dominujących problemów geologiczno-inżynierskich wynikających z budowy geologicznej, warunków wodnych, właściwości fizyczno-mechanicznych i procesów geodynamicznych,
 — określenie trudności i zagrożeń w odniesieniu do projektowanej inwestycji w związku z rozpoznawanymi warunkami geologiczno-inżynierskimi i wskazanie sposobów przeciwdziałania,
 — ocenę przydatności podłoża budowlanego dla projektowanej inwestycji, sugestie co do sposobu posadowienia, ewentualne zalecenie dodatkowych badań specjalistycznych,
 — wytyczne dla następnego etapu rozpoznania.
Część graficzna i tabelaryczna powinna zawierać:
— mapę z lokalizacją terenu badań w skali co najmniej 1:100 000,
— podkłady sytuacyjno-wysokościowe w skalach od 1:100 do 1:2000 z lokalizacją obiektów,
— mapę geologiczno-inżynierską,
— problemowe mapy geologiczno-inżynierskie (np. strop utworów trzeciorzędowych),
— przekroje geologiczno-inżynierskie,
— profile wyrobisk,
— karty sondowań i innych badań polowych,
— wykresy i zestawienia tabelaryczne wyników badań laboratoryjnych.
C. BADANIA NA OBSZARACH DZIAŁANIA PROCESÓW GEODYNAMICZNYCH

Z procesów geodynamicznych stwarzających zagrożenie dla projektowanych obiektów należy wymienić procesy osuwiskowe i krasowe oraz sufozję, erozję i abrazję.

Największy ujemny wpływ na obiekty budowlane mają procesy osuwiskowe i krasowe, a na terenach intensywnej eksploatacji podziemnej sztucznie wywołane deformacje górnicze.

Obszary o czynnych procesach geodynamicznych należy wydzielić w trakcie wstępnej i szczegółowej analizy zdjęć lotniczych, przeglądu terenu oraz podczas zdjęcia geologiczno-inżynierskiego. Czynności te wykonuje się przede wszystkim w pierwszych etapach dokumentowania.

Na etapie badań szczegółowych należy natomiast przeprowadzić terenowe badania, których celem jest:
— określenie genezy procesu geodynamicznego i dalszego jego przebiegu, a na tym tle szerzej prognozy rozwoju przy uwzględnieniu wpływu projektowanych inwestycji,
— określenie intensywności procesu,
— określenie warunków, które muszą być spełnione dla bezpiecznej realizacji inwestycji.

1. PROCESY OSUWISKOWE

Na podstawie kartoteki osuwisk Państwowego Instytutu Geologicznego i komputerowej rejestracji osuwisk na drogach krajowych, znajdującej się w Generalnej Dyrekcji DrógPUBLICZNYCH, należy wstępnie sprawdzić, czy na obszarze projektowanych badań geologiczno-inżynierskich występują formy osuwiskowe.

Klasyfikację powierzchniowych form ruchów mas ziemnych należy przeprowadzić według tabeli 21.

Na mapie występowania gruntów osuwiskotwórczych należy wydzielić:
— Osuwiska obecnie czynne.
— Osuwiska nieczynne (zamarłe) lub ślady dawnych osuwisk (zdenudowane nisze i jezory).
— Złaziska pokrywy zwietrzelinowej lub gruntów ilastych, spływy gleby na większą skalę:
a) aktywne,
b) mało aktywne.
— Potencjalne obszary osuwiskowe, czyli obszary, na których nie stwierdza się ruchów osuwiskowych, ale budowa geologiczna, sytuacja morfologiczna i hydrogeologiczna jest analogiczna jak na obszarach czynnych i w związku z tym istnieje duże prawdopodobieństwo rozwinięcia ruchów w sprzyjających warunkach.
— Uszkodzenia i zagrożone obiekty (budynki, odcinki linii komunikacyjnych itp.).
— Przepływy wysięków, zawilgocone fragmenty zboczy, obniżenia i nisze na zboczach, w których gromadzą się wody powierzchniowe i gruntowe.

1.1. Czynniki niekorzystne

Niekorzystnym czynnikiem jest skłonność do powstawania zmian poziomych i pionowych w obrębie przypowierzchniowych mas skalnych. Warunkiem powstawania ruchów osuwiskowych jest współwystąpienie utworów osuwiskotwórczych odpowiednio zawodnionych oraz określonego nachylenia powierzchni. Utwory osuwiskotwórcze występujące w Polsce to przede wszystkim iły warwowe, iły plioceńskie, iły krakowieckie i iły septariowe. Utwory fliszowe w Karpatach są podatne na tworzenie się osuwisk wszelkich typów ze względu na przewarstwienia ilaste, jak też ze względu na nachylenie stoków.
1.2. Rejony występowania

Poza Karpatami, gdzie osuwiska są liczne, występują one w rozproszonych skupiskach na obszarze całego kraju. Takich skupisk można wymienić na Niżu Polskim kilkadziesiąt. Do największych i najbardziej niebezpiecznych należą zbocza doliny Wisły między Tarnobrzegiem a Sandomierzem, Warszawą a Włocławkiem i między Bydgoszczą a Tczewem, dolina Sanu, Narwi, Note ci i Kamiennej oraz obszar lessowy na południe od Lublina.

W Karpathach szczególnie dużo osuwisk występuje na terenie Beskidów w obrębie płaszczyzny magurskiej oraz godulskiej.

1.3. Charakterystyka

Z ogólnej liczby znanych w Polsce osuwisk około 90% to typowe zsuwy i obrywy, a tylko 10% to spływy, przede wszystkim na lessach. W Karpathach występuje około 9000 osuwisk, a wśród nich przeszło 600 powstało w wyniku działalności człowieka. Poza Karpatami występuje w Polsce około 2500 osuwisk, z czego około 400 powstało z winy człowieka.

Ogólna powierzchnia osuwisk w Polsce wynosi ponad 700 km², a powierzchnia obszarów wykazujących tendencję osuwiskową około 2000 km². Powierzchnię użytków rolnych zniszczo nych przez osuwiska ocenia się na około 550 km², a lasów przeszło 120 km².

Poza Karpatami około 500 osuwisk zagraża bezpośrednio obiektom budowlanym (budynki, drogi i linie kolejowe), a w Karpathach jest tych osuwisk około 3000.

Obszary osuwiskowe powinny być wyłączone z planowanej zabudowy. W przypadkach koniecznych, np. w trakcie projektowania zapór wodnych, dróg i linii kolejowych, należy przewidzieć specjalne badania geologiczno-inżynierskie. Są to badania kosztowne, a ze względu na konieczność obserwacji ruchu długotrwałe.

1.4. Szczegółowe badania obszarów osuwiskowych

Badania te obejmują:
— założenie reperów obserwacyjnych powierzchniowych i ewentualnie głębokich w celu pomiarów ruchów zboczów metodami geodezyjnymi lub teledetekcyjnymi (GPS — global positioning system),
— wykonanie otworów wiertniczych w przekrojach prostopadłych do osuwiska w liczbie co najmniej trzech u podnóża, na zboczu i w koronie osuwiska,
— pobranie w otworach wiertniczych próbek o naturalnej wilgotności (NW) co 20 lub 50 cm w celu określenia wilgotności, a co 100 cm próbek o nienaruszonej strukturze (NNS) w celu określenia innych wiodących parametrów fizyczno-mechanicznych,
— wykonanie badań geofizycznych, aby wyjaśnić takie problemy, jak np. zasięg osuwisk, podział na zespoły litologiczne, stopień zwietrzenia i miąższość zwietrzeliny oraz porowatość całkowitą.
1.5. Kategorie geotechniczne stateczności zboczy

Przed przystąpieniem do określenia stateczności zboczy należy zaliczyć je do jednej z trzech kategorii geotechnicznych (pr ENV 1994).

Kategoria I obejmuje:
1) skarpy wykopów do 1,5 m nie nawodnione,
2) skarpy nasypów do 3,0 m,
3) zbocza z gruntów sypkich lub spoistych, bez śladów osuwisk, do 6,0 m, nie zabudowane.

Kategoria II obejmuje:
1) skarpy wykopów do 4,5 m, nie nawodnione,
2) skarpy wykopów do 2,5 m przy obecności wód gruntowych,
3) skarpy nasypów do 8,0 m,
4) zbocza z gruntów sypkich i spoistych do kilkunastu metrów, bez śladów osuwisk, nie zabudowane,
5) zbocza skalne i zwietrzelinowe niezależnie od wysokości o nachyleniu do 15N, bez śladów osuwisk, przeznaczone do zagospodarowania (w Karpatach zdarzają się zbocza osuwiskowe o mniejszych kątach nachylenia niż 15N).

Kategoria III obejmuje:
1) głąbokie wykopy,
2) nasypy powyżej 8,0 m,
3) zbocza do zagospodarowania obiektami budowlanymi o nachyleniu większym niż 15N.

W przypadkach nie objętych tym zestawieniem lub w przypadkach uzasadnionych sytuacją należy dokonać wyboru kategorii na podobnych zasadach.

Do kategorii I wystarcza stosować metody tabelaryczne i nomograficzne określenia nachylenia stoku.

Do kategorii II wystarcza stosować metody nomograficzne określania wskaźnika stanu równowagi. W celu ustalania wartości parametrów geotechnicznych można stosować wartości tabelaryczne.

Do kategorii III obowiązuje ustalanie parametrów na podstawie badań połowych i laboratoryjnych gruntów. Należy przy tym maksymalnie wykorzystać dotychczasowe doświadczenia, stosując parametry ustalone z innych osuwisk w rejonie metodami back analysis, tj. metodami o tak zwanej odwrotnej analizie stateczności zboczy.

Badaniami terenowymi należy (w otworach wiertniczych) wyznaczyć zmienność wilgotności naturalnej w czasie i ustalić, w jakich warunkach zewnętrznych nastąpi przekroczenie wartości granicznej warunkującej przekroczenie wskaźnika stateczności 1.

Metody obliczeniowe wskaźnika stateczności należy dobierać w zależności od schematu warunków geotechnicznych i rodzaju parametrów uzyskanych z badań. Obliczenia można wykonać zgodnie z instrukcją Instytutu Techniki Budowlanej (Posadowienie..., 1991).
2. PROCESY KRASOWE

2.1. Czynniki niekorzystne

Podstawowym niekorzystnym czynnikiem są procesy krasowe, a wtórnym procesy sufozyjne. Od natężenia działania tych dwu czynników zależy stopień skomplikowania budowy geologicznej, ważny z punktu widzenia ochrony środowiska i określenia przydatności budowlanej obszaru.

2.2. Charakterystyka

Procesy krasowe działają w przewadze w wapieniach, marglach i gipsach znacznej miąższości.

Stopień nasilenia procesów krasowych jest bardzo zróżnicowany. Na pewnych obszarach procesy krasowe nie zachodziły. Należy się jednak spodziewać, że na większości obszarów, na których występują w podłożu budowlanym wapień i gipsy, procesy krasowe działały i działają bardzo intensywnie.

Formy krasowe powstają najczęściej w kilku cyklach. Największe rozmiary pustek, a więc największe niebezpieczeństwo, przedstawią formy krasu wewnętrznego powstałe w jurze, kredzie i wczesnym trzeciorzędzie. Długość niektórych korytarzy tego cyklu krasowego przekracza setki metrów, większe osiągają kilkadziesiąt metrów długości i do 30 m wysokości.

Młodsze formy krasowe powstałe w późnym trzeciorzędzie i w plejstocenie rozwinięły się w silnie spękanych wapieniach i gipsach i dlatego występują licznie, ale mają na ogół mniejsze rozmiary.

Poza formami krasu wewnętrznego występują często formy krasu powierzchniowego (typu krasu wieżowego). Amplituda wahań stropu wapienia w miejscach występowania krasu wieżowego jest bardzo silnie zróżnicowana i wynosi 10–20 m (na odcinkach 1–10 m), a skrajnie dochodzi do 40 m (na odcinku 0,5–2 m). Formy krasowe typu wieżowego są przykryte glinami zwietrzelinowymi, glinami zwalowymi i piaskami pokrywowymi, tak że na współczesnej powierzchni terenu nie zaznacza się. Tym większe jest niebezpieczeństwo związane z ich występowaniem.

Na powierzchni terenu działalność procesów krasowych zaznacza się głównie w formie pojedynczych i grupowych lejków krasowych.

Niekorzystne dla środowiska wpływy form krasowych sprowadzają się przede wszystkim do:
— bardzo szybkiego i łatwo wegetowania wód krasowych z powierzchni terenu,
— dużych różnic osiadania budowli posadowionych w rejonie krasu wieżowego (organów krasowych),
— łagodnego powstania sufozji gruntów leżących na skrasowialym podłożu w przypadku awarii wtórnych zbiorników wodnych,
— trudności z uszczelnianiem podłoża w budownictwie hydrotechnicznym.

Lokalizacja osiedli, przemysłu i zbiorników wodnych na obszarach krasowych musi być po-przedzona wszechstronnymi i bardzo obszernymi badaniami geologiczno-inżynierskimi.
2.3. Badania na obszarach krasowych

Na obszarach działania procesów krasowych dla dużych inwestycji budowlanych należy wykonać:
— Kartowanie geologiczno-inżynierskie w skali 1:25 000 powierzchniowych form krasowych na większym obszarze, tak aby możliwe było określenie związku form krasowych z kopaliną i aktualną siecią hydrograficzną. Do kartowania należy wykorzystać zdjęcia lotnicze.
— Badania geofizyczne metodami elektrooporowymi (profilowanie, sondowanie) lub sejsmiczną (refrakcyjną). Celem wykonania badań geofizycznych jest stwierdzenie występowania zjawisk krasowych, płytkich i dużych form krasowych wewnątrz wapienia i głębokości występowania krasowiącej skały oraz charakteru wypełnienia form krasowych.
— Interpretację szczegółową zdjęć lotniczych, a szczególnie zdjęć radarowych i satelitarnych pod kątem zbieżności elementów głębszej tektoniki nieciągłą z kierunkami rozwoju procesu i form krasowych.
— Kontrolne wiercenia w miejscach anomalii geofizycznych i w węzłowych punktach, wyznaczonych z interpretacji materiałów teledetekcyjnych.
— Badania wodochłonności, a także cementochłonności w celu określenia stopnia krasowania.

3. PRZEOBRAŻENIA ANTROPOGENICZNE

Antropogeniczne przeobrażenia i degradacje litosfery przede wszystkim dotyczą:
— przekształceń powierzchni ziemi,
— zmian fizyczno-chemicznych właściwości skał,
— zmian rozkładu pól naprężeń w utworach skalnych,
— zmian hydrogeologicznych,
— tworzenia gruntów antropogenicznych (inżynierskie mieszanki gruntowe, odpady),
— ograniczenia i rozdrobnienia powierzchni czynnej biologicznie z jednoczesnym pogorszeniem jej jakości oraz zakłóceniem równowagi dynamicznej i procesów odnowy.

Ze względu na stały i powszechny charakter antropogenicznych oddziaływań na litosferę, spektrum efektów degradacji jest bardzo duże i zróżnicowane.

Ogólnie niekorzystne skutki nadmiernego eksploatacji powierzchni litosfery ujawniają się szczególnie wyraźnie poprzez intensyfikację:
— antropogenicznych procesów geomorfologicznych,
— degradacji gleb,
— procesów zanieczyszczenia litosfery,
— zmian kierunków użytkowania powierzchni ziemi,
— wyczerpywania się zasobów surowcowych.

Wpływ człowieka na procesy kształtowania rzeźby terenu może mieć charakter bezpośredni poprzez tworzenie deformacji naturalnej powierzchni terenu, lub też może mieć charakter pośredni poprzez uruchamianie lub zmianę intensywności naturalnych procesów geomorfologicznych.
Największe i najrozleglejsze deformacje powierzchni terenu powstają przy intensywnej eksploatacji górniczej. Tworzą się wtedy różnej wielkości wkłęsło i wypukłe formy powierzchni ziemi o zróżnicowanym nachyleniu stoków.

Z wielkoskalowymi wyrobiskami i wypotiskami podziemnymi są związane rozległe deformacje ciągłe, powstające na skutek ubytku mas w podłożu. Zmiany stanu naprężeń i struktury górotworu nieuchronnie prowadzą do powstania niecek osiadania. Odniesienia powierzchni tere- nu sięgają tam od kilku do kilkunastu metrów, dochodzą nawet do kilkudziesięciu metrów.

Powszechnie odpady dzieli się na dwie kategorie: odpady przemysłowe i komunalne (bytowo-gospodarcze). Odpady komunalne składają się głównie z resztek artykułów spożywczych, papieru i tektury, szkła, metali i tworzyw sztucznych, zużytych ubrań i sprzętów. Ilość tych odpadów jest z reguły proporcjonalna do standardu życia i stopnia urbanizacji. W bogatych społeczeństwach większy udział w strukturze odpadów komunalnych stanowią różnych rodzajów opakowań (szklane, metalowe, z tworzyw, tektury), a w społeczeństwach ubogich przeważają odpadki żywnościowe. Od struktury jakościowej odpadów zależą ich właściwości paliwowe (wartość opałowa, ilość części palnych, zawilgocenie) oraz nawozowe (zawartość węgla organicznego i substancji organicznych). Właściwości te warunkują możliwość utylizacji odpadów komunalnych (spalanie, kompostowanie, składowanie).

Uciążliwość odpadów komunalnych dla litosfery wynika głównie z ich ogromnych ilości, a więc i z konieczności przeznaczenia pod wysypiska znacznych powierzchni wartościowego gruntu.

Odpady komunalne stanowią również czynnik degradujący litosferę na skutek wnikania rozmaitych substancji w głębi gruntu pod wysypiskami i w ich pobliżu. Dotyczy to zwłaszcza wysypisk „dzikich” lub usankcjonowanych prawnie, ale źle zabezpieczonych. Degradacja ta ma nie tylko charakter chemiczny, ale i biologiczny na skutek wnikania do gleby i warstw wodonoœciowych procesów samorzutnych i niekontrolowanych procesów zachodzących w odpadach spoœywczych, które dodatkowo są bazą do rozwoju mikroorganizmów, robaków, gryzoni.

Największe zagro¿enie ska¿eñ litosfery powodują odpady niebezpieczne ze względu na swoje właściwości i oddziaływania: wybuchowe i łatwopalne, utleniające, korozjne, toksyczne i ekotoksyczne, rakotwórcze, zaka¿ne, dra¿niące lub szkodliwe w inny sposób dla ludzi i bioce- noz. W różnych wykazach odpadów niebezpiecznych najczęściej znajdują się te, które zawierają w swoim składzie:

— metale ciœżkie i ich związki (w tym zwłaszcza ołów, kadm, rtęć, chrom, tal, miedz, cynk, beryl),
— oleje mineralne, emulsje olejowo-wodne i inne ropopochodne oraz wielopierœcieniowe węglowodory aromatyczne (WAA),
— rozpuszczalniki organiczne, kwasy, zasady i ich roztwory,
— cyjanki, fenole, etery, związki fosforu i fluoru,
— biocydy, furany, dioksyny, azbest,
— polichlorowane dwu- i czterofenyle (PCB i PCT), polibromowane dwufenyle (PBB), superpolichlorek i polichlorek winylu (PCW),
— preparaty do konserwacji drewna, żywice, plastyfikatory, kleje i spoiva,
— leki, farmaceutyki, odpady ze szpitali i oœrodków weterynarii oraz odpady z rzeœni i garbarń,
— farby, lakiery, pokosty, barwniki, tusze i pigmenty,
— substancje radioaktywne i wybuchowe,
— inne związki toksyczne.

W skali globalnej, a także i w skali Polski, najpowszechniej zagrożenia litosfery i hydrosfery występują w związku z wydobyciem i przeróbką ropy naftowej oraz obrotem i stosowaniem substancji ropopochodnych. Szczególnie niebezpieczne są awarie zbiorników, rurociągów lub cysterń i statków, kiedy dochodzi do rozległych, długotrwałych degradacji gleb i głębszych warstw litosfery. Niebezpieczeństwo skażeń litosfery w skali lokalnej stwarza w Polsce kilkadziesiąt tysięcy punktów obrotu paliwami i produktami naftowymi.

4. PROCESY I ZJAWISKA ANTROPOGENICZNE

4.1. Charakterystyka i klasyfikacja gruntów antropogenicznych dla celów geologicznno-inżynierskich

Termin grunty antropogeniczne wszedł do literatury fachowej na stałe i pod tą nazwą rozumie się odpady stałe związane z działalnością przemysłową i bytową człowieka oraz grunty naturalne urobione, przemieszczone i ponownie zdeponowane w środowisku przyrodniczym. W normie PN-86/B-02480 (od 01.01.1998 r. już nie obowiązującej) grunty antropogeniczne są wyróżnione ale nie podzielone, mimo dużego zróżnicowania ich właściwości fizyczno-mechanicznych i chemicznych, a grunty nasypowe w sposób nie uzasadniony zaliczono do gruntów naturalnych rodzimych.

Dla odpadów stałych wchodzących w skład gruntów antropogenicznych istnieje wiele podziałów, wśród których należy wymienić: Rozporządzenie Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 24.12.1997 r. (Dz. U. nr 162 poz. 1135) w sprawie klasyfikacji odpadów, katalog odpadów Unii Europejskiej, podział odpadów GUS, klasyfikację odpadów zgodnie z Rozporządzeniem R. M. z dnia 19.10.1995 r., klasyfikację mineralnych surowców odpadowych górnictwa i energetyki opracowaną przez Instytut Gospodarki Odpadami w 1996 r. oraz projekt PN.

Grunty nasypowe dzieli się ogólnie na nasypy niebudowlane i budowlane.

Grunty antropogeniczne dla celów geologicznno-inżynierskich należy podzielić na trzy główne grupy:

I. Grunty powstałe w wyniku niszczenia pierwotnej struktury skał (gruntów), ich przemieszczenia, powtórnego zdeponowania bez istotnej zmiany wyjściowego składu mineralnego, a przypadku gruntów sypkich — uziarnienia. Do tej grupy należą m. in. grunty zwałówskie zewnętrzne i wewnętrzne, kopalni górniczych, hałd górniczych, nasypów.

II. Grunty powstałe jako odpady stałe technologiczne w produkcji przemysłowej. Grupa tych gruntów jest bardzo zróżnicowana pod względem właściwości i oddziaływania na środowisko. W grupie tej znajduje się odpady masowe, takie jak popioły z elektrowni wielkich mocy, osady połotocjowe, ale i specyficzne, występujące w niewielkich ilościach, bardzo często toksyczne, w tym szczególnie niebezpieczne (I i II kategorii według Rozporządzenia R. M. z 19.10.1995 r.).

III. Grunty stanowiące odpady bytowe, rolnicze, budowlane. Do tej grupy należy zaliczyć materiał wysypisk komunalnych, w przewadze organiczny, osady z oczyszczalni ścieków, grunty zwałówisk budowlanych.
Ze względu na warunki składowania w obrębie tych trzech grup wyróżnia się:
— zwały, grunty powstałe w wyniku mechanicznego lub pneumatycznego transportu i składowania (składowiska-zwałowiska, hałdy, nasypy),
— osady, grunty powstałe w wyniku transportu hydraulicznego lub mieszanego (mechanicznego i hydraulicznego), deponowane w środowisku wodnym (składowiska mokre, stawy osadowe).

Pozostałe dalsze podziały dokonuje się ze względu na oddziaływanie odpadów na środowisko, biorąc pod uwagę skład biochemiczny, chemiczny (toxyczność), radioaktywność, wybuchowość, samozapalność i inne, zależnie od specyficznych właściwości gruntu.

Przy wyróżnieniu tych trzech głównych grup, dodatkowo w badaniach geologiczno-inżynierskich należy uwzględnić obszary występowania in situ gruntów naturalnych rodzimych, ale całkowicie lub strefowo zanieczyszczonych substancjami chemicznymi lub radioaktywnymi.

4.1.1. Grunty antropogeniczne w pracach kartograficznych

W pracach kartograficznych geologiczno-inżynierskich istotne jest określenie zasięgu i formy występowania gruntów antropogenicznych, miąższości oraz ogólnie określenie ich cech litologicznych i genezy (pochodzenia). Szczegółowość rozpoznania zależy od skali mapy. W przypadku gruntów antropogenicznych, które mogą oddziaływać szkodliwie na środowisko, należy dążyć do określenia ich składu chemicznego i ustalenia stopnia zagrożenia dla zdrowia i życia ludzi oraz środowiska przyrodniczego.

Na obszarach występowania gruntów antropogenicznych, ze względu na trudną do przewidzenia zmienność ich cech, jest wymagane zwiększenie zakresu badań. Tereny, na których występują grunty antropogeniczne, powinny być zakwalifikowane o jeden stopień wyżej w ocenie złożoności budowy geologicznej terenu, niż to by wynikało z wzięcia pod uwagę tylko naturalnie ukształtowanej budowy geologicznej terenu.

Grunty antropogeniczne powinny być również odwzorowywane na mapach geologicznych w skali 1:50 000 i większych oraz na mapach geologiczno-gospodarczych.

4.1.2. Badanie właściwości gruntów antropogenicznych w celu składowania

Pozostałe cechy identyfikacyjne istotne jest określenie cech fizyczno-chemicznych, pozwalających na ocenę właściwości konstrukcyjnych i ocenę oddziaływania składowanego materiału na środowisko przyrodnicze, ze szczególnym uwzględnieniem środowiska geologicznego.
W badaniach tych należy uwzględnić, czy materiał będzie składowany jako zwal, czy też będzie składowany na mokro.

W pierwszym przypadku istotne będą:
— zagęszczalność materiału,
— odkształcalność,
— parametry określające stateczność zboczy,
— zmienność cech fizycznych i wytrzymałościowych pod wpływem przyrastających warstw składowanych gruntów,
— podatność na erozję,
— rozwój procesów biochemicznych, np. powstawanie biogazu.

W drugim przypadku określić należy:
— warunki rozfrakcjonowania materiału w procesie namywania i sedymentacji, jako istotnego procesu w kształtowaniu właściwości materiału namywanego,
— właściwości filtracyjne (współczynnik filtracji, współczynnik odszczelności),
— deformacje filtracyjne gruntów, ze szczególnym uwzględnieniem sufozji i przebicia hydraulicznego,
— podatność na erozję (rozmywalność),
— możliwość wykorzystania materiału do nadbudowy obwąchowań i jako podłoża.

W wyniku tych badań dla obydwu typów składowisk powinny być określone: geometria składowiska, technologia zwalowania lub namywania, systemy zabezpieczające eksploatację, kierunki rekultywacji i zagospodarowania.

4.1.3. Badanie geologiczno-inżynierskie na potrzeby wykorzystania gruntów antropogenicznych jako podłoża budowlanego

Jako podłoże mogą być rozważane tylko grunty antropogeniczne grupy I i II oraz gruz budowlany z grupy III, występujące w formie składowisk pogórniczych, poenergetycznych, obszarów zrekulturowanych wyrobisk i terenów po makroniwelacji.

Grunty te ze względu na swoje właściwości związane ze świeżością struktur i słabą konsolidacją mogą być oceniane jako podłoże budowli po przeprowadzeniu badań, których zakres umożliwia zgodnie z normą PN-81/B-03020 obliczanie nośności i osiadania według II stanu granicznego. W koncepcji zabudowy na tych gruntach należy brać pod uwagę wszystkim obiekty lekkie o odpowiednio zaprojektowanych fundamentach (lawy o wzmocnionym uzbrojeniu, ruszt, płyty fundamentowe).

Przy ocenie tych gruntów jako podłoża należy również uwzględnić:
— nachylenie ich powierzchni,
— czynne procesy geodynamiczne,
— deformacje filtracyjne.

Budownictwo tego typu jest wykonywane na obszarach składowisk pogórniczych i na terenach zrekulturowanych wyrobisk poeksploatacyjnych (np. w rejonie Warszawy).

Wyjątkowego znaczenia w badaniach geologiczno-inżynierskich gruntów antropogenicznych i obszarów zdewastowanych, gdzie mogą wystąpić grunty in situ ale zanieczyszczone chemicznie, nabierają badania geochemiczne.
W wyniku tych badań na obszarach skażonych należy wydzielić strefy skażeń z uwzględnieniem ich stężeń i w nawiązaniu do tego określić możliwości zabudowy i ewentualnie kierunki utylizacji, umożliwiające lub polepszające warunki zabudowy.

4.1.4. Badanie geologiczno-inżynierskie gruntów antropogenicznych jako materiału konstrukcyjnego

Grunty antropogeniczne I i II grupy znajdują coraz większe zastosowanie jako materiał konstrukcyjny obiektów inżynierskich, jak:
— nasypy kolejowe i drogowe,
— zapory o niewielkim piętrzeniu,
— obwodowania składowisk mokrych i wały przeciwpowodziowe.

Pozostańym gruntom te w bardzo dużym zakresie są stosowane do rekultywacji technicznej (między innymi wypełnianie niecier osiadło powęglowych i posiarkowych oraz wyrobisk podziemnych), jako warstwy izolacyjne i jako składnik formowanych mineralnych warstw izolacyjnych, a także jako składnik mieszanek gruntowych polepszających i uzdatniających grunty na określone potrzeby.

Z uwagi na duży zakres zastosowań gruntów antropogenicznych, cele badawcze i zakres badań jest bardzo zróżnicowany (H. Glinko, T. Bizoń, 1994; S. Traczyk i in., 1996; G. Burkhard i in., 1997). W przypadku obiektów inżynierskich, podobnie jak dla gruntów naturalnych rodzimych, istotne jest badanie parametrów zagęszczalności, dobór sprzętu zagęszczającego i technologii zagęszczania, ale także uwzględnienie ewentualnych przemian geochemicznych gruntów wbudowanych oraz ich stopień agresywności w stosunku do konstrukcji betonowych i stalowych. Istotne też będzie, w przypadku wykonywania nasypów, określenie ewentualnego wpływu odcieków na grunty i wody podziemne.

Przy rekultywacji, szczególnie wyrobisk w obrębie aglomeracji miejskich i na obszarach przemysłowych, należy dążyć do uzyskania takiego zagęszczenia wbudowanych gruntów antropogenicznych, aby po rekultywacji teren mógł być zagospodarowany do budowy obiektów kubaturowych, magazynowych i placów składowych, szczególnie przydatnych w takich strefach osiedlencezych.

Badania nad wykorzystaniem gruntów antropogenicznych jako mineralnych warstw izolacyjnych wymaga zastosowania bardzo skomplikowanych i specjalistycznych badań, dotyczących przede wszystkim zagadnień procentowego udziału we frakcji ilastej poszczególnych grup mineralów ilastych, właściwości sorpcyjnych i desorpcyjnych, przemieszczania się zanieczyszczeń drogą filtracji i dyfuzji, a także urabialności, zagęszczalności itp.

4.1.5. Zakres i kierunki badań

Ze względu na zróżnicowane właściwości gruntów antropogenicznych, jak i duży zakres celów badawczych, uwarunkowanych ich składowaniem i bardzo różnorakim wykorzystaniem, problematyka badawcza jest daleka od tradycyjnie pojmowanej i dotyczyć musi różnych aspektów funkcjonowania tych gruntów w środowisku. W tabeli 22 zestawiono możliwie pełny zakres i kierunki badań gruntów antropogenicznych w nawiązaniu do ich roli i funkcji w środowisku geologicznym (A. Dragowski, 1998).
<table>
<thead>
<tr>
<th>Problemy badawcze</th>
<th>Cel badań</th>
<th>Główne kierunki badań</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prace kartograficzne na obszarach występowania gruntów antropogenicznych</td>
<td>Sporządzanie map: geologicznych (1:50 000 i większych)</td>
<td>Rodzaj gruntu antropogenicznego, zasięg występowania, miąższość</td>
</tr>
<tr>
<td></td>
<td>geologiczno-technicznych</td>
<td>Rodzaj gruntu antropogenicznego, forma i zasięg występowania, miąższość,</td>
</tr>
<tr>
<td></td>
<td>geologiczno-gospodarczych</td>
<td>właściwości fizyczno-mechaniczne, toksyczność</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodzaj gruntu antropogenicznego, zasięg i forma występowania, miąższość,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>możliwość gospodarczego wykorzystania</td>
</tr>
<tr>
<td>Właściwości gruntów antropogenicznych przewidzianych do składania</td>
<td>Określenie geotechnicznych warunków składania</td>
<td>Zróżnicowane w zależności od rodzaju składnika:</td>
</tr>
<tr>
<td></td>
<td>Wybór technologii składania (zwałowisko, składówisko mokre)</td>
<td>dla zwłokiiska należy przede wszystkim określić:</td>
</tr>
<tr>
<td></td>
<td>Wybór geometrii składówki ze względu na stateczność zboczy i czynne procesy geodynamiczne</td>
<td>stateczność zboczy, zagęszczalność, podNatność na erozję</td>
</tr>
<tr>
<td>Wybór lokalizacji składówki, badania podłoża oraz strefy ich przewidywanego oddziaływania</td>
<td>Wybór lokalizacji składówki</td>
<td>Wyznaczanie potencjalnych rejonów lokalizacji z uwagi na budowę geologiczną i inne elementy środowiska</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zagospodarowanie terenu w nawiązaniu do właściwości fizyczno-chemicznych</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grunt antropogenicznego i technologii składowania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wybór z kilku wariantów lokalizacji konkretnego miejsca na składowisko, wstępne badania dla wybranej lokalizacji</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prognoza oddziaływania na środowisko, przygotowywanie danych do oceny oddziaływania na środowisko (OOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ustalenie budowy geologicznej i warunków hydrogeologicznych</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Określenie warstw izolacyjnych i filtracyjnych podłoża</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Określenie właściwości podłoża ze względu na nośność, odkształtność</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(wypieranie)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zmiany właściwości podłoża w zależności od dynamiki przyrostu składowanego materiału</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ustalenie danych odnośnie do rozwiązań systemów izolacyjnych składówiska</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poleczanie właściwości podłoża</td>
</tr>
<tr>
<td>Badania geologiczno-inżynierskie w celu oceny oddziaływania na środowisko</td>
<td>Wpływ składowiska na środowisko geologiczne w fazie budowy, eksploatacji i rekultywacji</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ocena stanu środowiska geologicznego przed lub w trakcie eksploatacji</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prognoza zmian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kierunki eliminowania skutków negatywnego oddziaływania składowiska na środowisko</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Określenie właściwości chemicznych, biochemicznych i fizyczno-mechanicznych gruntów antropogenicznych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ustalenie warunków geologicznych, hydrogeologicznych i geologiczno-inżynierskich podłoża</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czynne procesy geodynamiczne, zachodzące w materiale składowanym i podłożu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring hydrogeologiczny i geologiczno-inżynierski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prognoza oddziaływania składowiska na środowisko przy określonych systemach izolacji i drenażu oraz technologii składowania</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wykorzystanie gruntów antropogenicznych jako podłoża budowlę</th>
<th>Ustalenie nośności i odkształceniowości gruntów dla obiektów kubaturowych o lekkiej konstrukcji, liniowych, specjalnych (placo składowe) z uwzględnieniem morfologii terenu i czynnych procesów geodynamicznych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polepszenie właściwości gruntów antropogenicznych</td>
<td></td>
</tr>
<tr>
<td>Badania jak dla gruntów mineralnych, rodzimych o poszerzonym zakresie i odpowiednimi dobrze metod badawczych w zależności od właściwości gruntów antropogenicznych</td>
<td></td>
</tr>
<tr>
<td>Określenie toksyczności</td>
<td></td>
</tr>
<tr>
<td>Dobór metody polepszania właściwości gruntów antropogenicznych w zależności od ich specyficznych właściwości, rozprzestrzenienia i mięśni</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zastosowanie gruntów antropogenicznych jako materiału konstrukcyjnego</th>
<th>Możliwości wykorzystania gruntów antropogenicznych do: budowy obiektów inżynierskich (nawspu kolejowe i drogowe) rekultywacji wykonania mieszanek gruntowych wykonania warstw izolacyjnych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagęszczalność</td>
<td></td>
</tr>
<tr>
<td>Podatność na deformacje filtracyjne</td>
<td></td>
</tr>
<tr>
<td>Podatność na erozję</td>
<td></td>
</tr>
<tr>
<td>Inne, zależnie od przeznaczenia gruntu</td>
<td></td>
</tr>
</tbody>
</table>
Pozna metodami powszechnie i standardowo stosowanymi dla gruntów antropogenicznych należy odpowiednio do potrzeb wprowadzić dodatkowo problematykę badań:
— chemicznych,
— geochemicznych,
— hydrochemicznych,
— mineralogicznych,
— radiologicznych.

W badaniach należy uwzględnić przemienność cech fizyczno-mechanicznych, chemicznych i mineralogicznych gruntów antropogenicznych i możliwość polepszenia ich właściwości w wyniku uaktywnionego stymulowania rozwoju procesów w celu uzyskania nowych jakościowo właściwości lub unieszkodliwiania ujemnych oddziaływań tych gruntów na środowisko.

Rozwiązanie tych problemów wymaga stosowania wielu metod badań terenowych in situ i laboratoryjnych, w tym modelowych. Konieczne jest monitorowanie zmian zachodzących w środowisku przyrodniczym pod wpływem oddziaływania tych gruntów.

4.2. Antropogeniczne przekształcenia środowiska

Człowiek poprzez działalność gospodarczą oraz bytowanie w dużych skupiskach aglomeracji miejskich i przemysłowych stał się istotnym czynnikiem kształtującym przypowierzchniowe partie litosfery poprzez zamierzone działania inwestycyjne oraz działalność nie kontrolowaną, której skutki były trudne do przewidzenia. Ogólnie można powiedzieć, że od czasów rewolucji przemysłowej w Anglii człowiek staje się coraz bardziej aktywnym czynnikiem zmieniającym środowisko. Rozwój techniki powoduje, że wielkie inwestycje i skupienie małych, powoduje wyjątkowo aktywny rozwój procesów antropogenicznych w środowisku geologicznym.

Antropogeniczne przekształcenie środowiska geologicznego prowadzić może do:
— przemienności właściwości skał i gruntów,
— inicjowania i stymulowania procesów geodynamicznych,
— kształtowania powierzchni terenu i naruszenia układu warstw,
— powstawania gruntów antropogenicznych i składania odpadów,
— dewastacji i degradacji terenu w wyniku eksploatacji odkrywkowej i otworowej kopalin.

Podane czynniki i zjawiska z uwagi na ich różnorodność, specyfikę oddziaływań i zasięg muszą być badane indywidualnie, przy zastosowaniu odpowiednich metod, uzależnionych dodatkowo od charakteru inwestycji i sposobu zagospodarowania terenu.

4.2.1. Odkształcenia na skutek eksploatacji podziemnej

Największe znaczenie mają przekształcenia powierzchni terenu związane z eksploatacją podziemną kopalin. Są to deformacje ciągłe — niecki osiadań lub trudne do przewidzenia deformacje nieciągłe. Deformacje ciągłe są wywołane głęboką eksploatacją górniczą kopalnian. Przybierają one formę tzw. niecki, której wymiary i inne parametry można dość precyzyjnie prognozować na podstawie budowy geologicznej złoża i danych planowanej eksploatacji i jej zasięgu. Jak wynika z obserwacji i pomiarów na obszarach eksploatacji węgla kamiennego w Polsce, obniżenie terenu może przekroczyć nawet 20 m. Głębokość obniżeń powoduje, że w strefie niecki następuje naruszenie struktury i tekstury mas skalnych i w konsekwencji zmiana
właściwości fizycznych oraz mechanicznych. Jednocześnie powstaje nowy układ hydrodynamiczny wód podziemnych i powierzchniowych. Mogą uruchamiać się procesy sufozyjne i osuwiskowe.

Zagrożenia dla zabudowy w strefie niecki są zróżnicowane. Najmniejsze w strefie środkowej, największe w strefie brzegowej, gdzie powstaje najwięcej szkód budowlanych, a w strefie brzegowej zewnętrznej, gdzie działają siły rozciągające powodujące dużo szkód budowlanych, zwłaszcza w obiektach liniowych.

Przydatność terenu niecki do zabudowy zależy od wyznaczonej kategorii deformacji górniczych. Wyróżnia się V kategorii, z których:

I i II — umożliwia budowę przy niewielkim lub umiarkowanym wzmocnieniu konstrukcji,
III i IV — na obszarach tych kategorii są wykonywane obiekty wymagające specjalnych, kosztownych zabezpieczeń i możliwości budowy są ograniczone,
V — tereny tej kategorii przeważnie nie nadają się do zabudowy.

Deformacje nieciągłe występują głównie w przypadku płytkiej eksploatacji górniczej i w strefach zaangażowanych tektonicznie, a szczególnie w strefach uskoków geologicznych. Mają one formy zapadlisk o stosunkowo niewielkich wymiarach. Na powierzchni zaznaczają się jako rowy i leje. Powstawanie tych form jest trudne do prognozowania.

4.2.2. Wyciskanie podłoża wokół składowisk kopalnianych

Proces ten ma charakter lokalny, wpływa jednak na zagospodarowanie terenu w strefach bezpośrednio związanych ze składowiskami odpadów kopalnianych lub zwałowisk.

4.2.3. Osiadanie powierzchni terenu na skutek odwodnień

Zmiany reżimu wód podziemnych są jedną z najczęściej występujących przyczyn odkształceń powierzchni terenu. Zmiany te mogą być spowodowane:

— intensywną, nadmierną i długotrwałą eksploatacją wód podziemnych dla celów pitnych lub przemysłowych,
— odwadnianiem utworów nadkładu i serii złóżowych w celu umożliwienia eksploatacji górniczej odkrywkowej lub podziemnej,
— drenażem płytkich wód gruntowych na obszarach sedymentacji organicznej.

Mechanizm odkształceń powierzchni terenu we wszystkich przypadkach jest podobny i wiąże się z konsolidacją warstw gruntów w wyniku odprowadzania wody znajdującej się w porach gruntu.

4.2.4. Zmiany powierzchni na skutek makroniwelacji

W związku z ogromnymi możliwościami technicznymi wiele dużych inwestycji budowlanych wykonuje się po uprzednim ukosztalconaniu powierzchni terenu, obejmującym niekiedy dziesiątki, a nawet setki hektarów. Makroniwelację na dużą skalę prowadzi się przy budowie autostrad (w skrajnych przypadkach na 1 km autostrady przemieszczane są grunty objętości do 40 tys. m³) oraz przy pracach rekultywacyjnych składowisk i zwałowisk. Makroniwelację prowadzi się w rejonach znacznych obszarów niecień osiedła i składowisk (hałdy powęglowe).
4.2.5. Deformacje powierzchni powstające w wyniku eksploatacji otworowej siarki

W miarę postępu eksploatacji na poszczególnych polach, obniżanie powierzchni terenu podlega dynamicznym przemianom. Stabilizacja następuje po kilkuletnim okresie od zakończenia eksploatacji. Rekultywacja i zagospodarowanie takich obszarów, gdzie obniżenia mogą dochodzić do kilku metrów, są bardzo trudne.

4.2.6. Zmiany powierzchni terenu na skutek składowania odpadów i gruntów nadkłada w kopalniach odkrywkowych

Szczególnie znaczącą rolę w środowisku odgrywają zwalowiska nadkładu kopalń węgla brunatnego i siarki. Są one trudne do zagospodarowania, rozwija się na nich zbocza erozja i procesy osuwiskowe. Na przedpolach składowisk niekiedy powstają deformacje na skutek wypierania gruntów.

4.2.7. Zmiany powierzchni terenu w wyniku eksploatacji odkrywkowej

Poważnym zagrożeniem dla środowiska powodującym jego dewastację są pozostawione nie rekultywowane wyrobiska poeksploatacyjne. Na obszarach tych rozwijają się na dużą skalę procesy geodynamiczne, kształtujące nowe zarysy wyrobisk. Następuje zmiana stosunków wodnych, stwarza się możliwość łatwego zanieczyszczenia wód podziemnych i tworzenia „dzikich” składowisk odpadów.

4.2.8. Powstawanie i składowanie gruntów antropogenicznych

Grunty antropogeniczne powstają w wyniku przemieszczania i składowania gruntów naturalnych, zwalowania nadkładu i jako odpad przemysłowy oraz jako odpad zbytowym, zwałożenia nadkładu i jako odpad przemysłowy oraz jako odpad związany z bytowaniem człowieka. Szczególnie odpady przemysłowe mają często charakter odpadów masowych i wykazują przy tym duże zróżnicowanie właściwości chemicznych, fizycznych i mechanicznych. Odpady bytowe to przede wszystkim odpadki z gospodarstw domowych, odpady gospodarcze z zakładów przemysłowych, osady z oczyszczalni ścieków, gruz budowlany.

Pomimo ogólnej, zdecydowanej tendencji do wykorzystania gospodarczego odpadów, a także minimalizacji ich powstawania, przede wszystkim metodami technologicznymi, duże ilości gruntów antropogenicznych podlegają składowaniu.

Składowanie odpadów zgodnie z Ustawą o odpadach z dnia 27.06.1997 r. jest formą ich unieszkodliwiania. Może się ono odbywać na składowiskach podpoziomowych, nadpoziomowych i mieszanych, przy czym składowanie nadpoziomowe, mimo że jest prostsze technologicznie, a przez to bardziej preferowane przez inwestorów, wpływa niekorzystnie na warunki krajobrazu.

Istotny wpływ na środowisko geologiczne ma sposób składowania, przy czym wyróżnia się tu:
— składowanie „na sucho” poprzez mechaniczne zwalowanie materiału (zwalowiska nadkładu z kopalni odkrywkowych),
— składowanie „na mokro” w odpowiednio przygotowanych stawach osadowych, gdzie materiał jest transportowany wodą i sedymentowany w składowisku, a wody określane jako nado-
sadowe są odprowadzane poza składowisko i najczęściej użête po uzdatnieniu do ponownego transportu w obiegu zamkniętym.

Procesy składowania, utrzymania składowiska i jego rekultywacji oraz zagospodarowania w sposób istotny wpływają na środowisko przyrodnicze, a szczególnie na środowisko geologiczne. Przeciwwzajemny wpływ ten ma na systemy izolacyjno-drenażowe dna, zboczów i czaszy przykrywające składowisko. Wymaga to jednak odpowiedniego do warunków geologicznych doboru rodzaju uszczelnień (mineralne warstwy uszczelniające, geomembrany, bentomaty i inne uszczelnienia sztuczne).

Należy stwierdzić, że większość starych składowisk w Polsce nie posiada odpowiedniej izolacji i w przewadze w sposób niekorzystny oddziałuje na środowisko. Wyjątkowo groźne są oddziaływania dużych składowisk, znajdujących się na obszarach brakujących warstw izolacyjnych, a zwierciadło wody występuje dość blisko powierzchni terenu (np. obszary dolin rzecznych).

4.2.9. Obszary zdeastrawowane

Do obszarów zdeastrawowanych należy zaliczyć:
— nie rekultywowane i nie zagospodarowane obszary eksploatacji odkrywkowej,
— obszary nie rekultywowanych i nie zagospodarowanych składowisk przy szczególnie intensywnym niszczeniu środowiska wokół składowiska,
— opuszczone poligony wojskowe, co jest sytuacją specyficzną, związaną ze stacjonowaniem obcych wojsk na terenie naszego kraju; na jednym tylko poligonie zarejestrowano ponad 100 miejsc składowania różnych odpadów i skażzeń gleb i gruntów,
— obszary skażone chemicznie, bakteriologicznie i radiologicznie; z doświadczeń dokumentujących warunków geologiczno-inżynierskich wynika, że szczególnie w strefach uprzemysłowionych mogą występuć obszary skażone, na których zabudowa mieszkaniowa ze względu na przekroczone normatywy jest niemożliwa,
— zamknięte zakłady produkcyjne, w których produkowane były substancje toksyczne lub na których terenie były składowane różne, często toksyczne odpady.

4.2.10. Skały i grunty o szczególnej podatności na działanie czynników antropogenicznych

Do gruntów i skał o szczególnej podatności na działanie czynników antropogenicznych należą:

Zwierzeliny skał. Usunięcie ich lub częściowe niszczenie profilu prowadzi do uruchomienia procesów wietrzeniowych, a w naszych warunkach klimatycznych przede wszystkim do wietrzenia fizycznego, związanego z deformacjami wilgotnościowymi i zamarzaniem.

Skały i grunty podlegające deformacjom na skutek zmian wilgotności (pęczniące). Ich właściwości będą uzależnione od stanu nasycenia wodą i jej chemizmu.

Grunty tiksotropowe. Są to grunty pylaste, podlegające upływnieniu na skutek obciążen dynamicznych. Szczególnie są podatne na drgania od przejeżdżających pojazdów i pracujących maszyn i urządzeń.

W dokumentowaniu warunków geologiczno-inżynierskich tę wyjątkową podatność gruntów na działanie czynników antropogenicznych należy uwzględnić przeprowadzając odpowiednie badania.

Ponadto należy jeszcze wskazać na dużą rolę budownictwa lądowego (mieszkaniowe, przemysłowe) i budownictwa wodnego w oddziaływaniu na środowisko przyrodnicze, w tym szczególnie na środowisko geologiczne.

Zabudowa i urbanizacja terenu wpływa na ograniczenie powierzchni ekologicznie czynnych, ograniczając tym samym infiltrację, co może doprowadzić do obniżania zwierciadła wody gruntowej. Doprowadzenie do budynków mediów (kanalizacja, wodociągi, ciepło, energia elektryczna, sieć telefoniczna i inne) i wykonanie odpowiednich wykopów wpływa na zmiany właściwości gruntów wokół budynków. Budowa głęboko posadowionych kolektorów może wpływać drenująco na wody podziemne.

Budowa sztucznych zbiorników wodnych powoduje największe zmiany w środowisku. Wpływ ten zależy od: pojemności, powierzchni lustra wody, wysokości piętrzenia, morfologii doliny, warunków geologicznych, hydrogeologicznych, istniejącego zagospodarowania terenu i warunków klimatycznych.

Realizacja tego typu obiektów, zależnie od podanych uwarunkowań, powoduje lub może powodować zmiany:

— hydrogeologiczne,
— hydrauliczne cieków,
— hydrogeologiczne (zmiany dynamiki i chemizmu wód podziemnych),
— klimatyczne,
— fitozoogeniczne,
— zagospodarowania terenu,
— krajobrazu.

Napełnianie zbiorników wodnych może wywołać wstrząsy tektoniczne, uruchomić czynne procesy geodynamiczne, w tym procesy przeróbki brzegowej. Ważne też jest oddziaływanie zbiorników na obiekty zabytkowe i na warunki eksploatacji złož. Duży zbiornik wodny może oddziaływać na cały odcinek rzeki położony poniżej zapory.

W tej grupie problemów należy jeszcze wskazać na wpływ działalności człowieka na przemienność właściwości gruntów i zmian krajobrazu w wyniku rekultywacji i zagospodarowania terenu.
D. BADANIA DLA RÓŻNYCH RODZAJÓW BUDOWNICTWA

1. BUDOWNICTWO POWSZECHNE

1.1. Dane ogólne

Budownictwo powszechne to głównie budynki zlokalizowane na obszarach osiedlowych i w miastach, ale także na terenach nie uzbrojonych. Przeznaczenie budynków może być mieszkalne, użytkowości publicznej (szpitale, szkoły), przemysłowe, handlowe i inne.

Istotną sprawą dla poprawnego wykonania badań geologicznych przy dokumentowaniu podłoża pod budynek jest ocena konstrukcji budynku ze względu na możliwość przemieszenia przez nią nierównomiernych odkształceń. Należy brać pod uwagę sztywność konstrukcji i także pamiętać, że około 50% odkształceń zachodzi w trakcie budowy obiektu i że z przyrostem liczby kondygnacji sztywność budynku narasta. Budynek, którego wymiary w rzucie odpowiadają wysokości pracuje zazwyczaj już jako sztywna bryła.

 Ważnym elementem, który pozwala sterować odkształceniami budynku są dylatacje. Przykładowe odległości między dylatacjami ze względów konstrukcyjnych wynoszą:
— budynki murowane — 50 m,
— budynki szkieletowo-żelbetowe — 40–60 m,
— budynki stalowe (hale) — 120 m,
— budynki stalowe wielokondygnacyjne — 60 m,
— budynki monolityczne z betonów niezbrojonych — 20 m.

1.2. Analiza założeń projektowych inwestycji

Analiza założeń projektowych powinna uwzględniać:
— lokalizację i rodzaj projektowanej inwestycji,
— wzajemne zależności technologiczne, komunikacyjne i inne, decydujące o lokalizacji poszczególnych obiektów lub ich zespołów,
— konstrukcje projektowanych obiektów, wartość dopuszczalnych całkowitych osiadłań i ich nierównomierność, rodzaje instalacji i przeznaczenie pomieszczeń poniżej poziomu terenu,
— sposób wpływu projektowanej inwestycji na zmianę ukształtowania istniejącego terenu i warunki wodno-gruntowe środowiska.

Analizę należy rozpocząć od szczegółowego zapoznania się z podstawowym planem lub zagospodarowaniem terenu. W wyniku tej analizy należy ustalić:
Dla budownictwa mieszkaniowego:
— liczbę, rodzaj i wielkość projektowanych obiektów i ich przeznaczenie,
— układ komunikacyjny (drogi, ulice),
— lokalizację zieleńców, placów, pawilonów usługowych i zaopatrzenia,
— uzbrojenie energetyczne, cieplne, telekomunikacyjne i inne.

Dla budownictwa przemysłowego:
— liczbę, rodzaj i wielkość projektowanych obiektów, ich przeznaczenie, powiązania pod względem funkcjonalnym i technologicznym,
— układ dróg komunikacyjnych wewnętrzszakładowych placów, składowisk bocznic kolejowych i powiązania ich z istniejącą siecią komunikacyjną,
— sieć gospodarki ściekowej, wodnej, centralnego ogrzewania, elektrycznej, sieci przemysłowe, sanitarne i wód opadowych, urządzenia oczyszczalni ścieków, ujęcia wody pitnej,
przemysłowej, spękonego powietrza, gazu, łączności, rurociągów produkcyjnych i inne instalacje przemysłowe.

Istotna jest także analiza planu zagospodarowania terenu na tle obecnego ukształtowania terenu, szczególnie pod kątem:
— makroniwelacji terenu i jej wpływu na zmianę dotychczasowych stosunków wodnych (zlewnie, rowy melioracyjne, podniesienie się poziomu wód gruntowych, odwodnienie itp.),
— zmiany warunków klimatycznych i glebowych na skutek np. wycięcia drzew,
— wpływu kolejności wykonania robót na ewentualne zmiany zawilgocenia podłoża gruntowego,
— doboru głębokości wykopów i wysokości projektowanych nasypów z uwagi na nośność gruntów,
— określenie warunków i możliwości posadowienia obiektów na nasypach.

Odrębne zagadnienie stanowi analiza konstrukcji budowli. Dane te są zawarte w części architektoniczno-konstrukcyjnej i w odpowiednich opisach technicznych projektowanych obiektów.

1.3. Projekt badań

Przed wykonaniem projektu prac geologicznych należy uzyskać:
1. Aktualny plan geodezyjny w podziałce 1:500 lub 1:1000 z pieczętką dla celów projektowania, z którego odczytuje się:
— położenie działki, jej wielkość, różnice poziomów na działce, położenie w stosunku do ulicy i stron świata,
— usytuowanie przewodów kanalizacyjnych, wodociągowych, centralnego ogrzewania, elektrycznych itp.
2. Wymagania władz budowlanych dotyczące zabudowy, tj. decyzję o warunkach zabudowy i zagospodarowania terenu.
3. Wymagania inwestora przetworzone przez architekta w plan zagospodarowania działki lub podane w formie programu użytkowania obiektu.
4. Informacje o rodzaju konstrukcji, która ma być zastosowana, głębokości posadowienia, liczbie kondygnacji podziemnych i naziemnych, wielkości obciążeń, specjalnych wymagań dotyczących izolacji itp.
5. Inne informacje:
— gdzie został zrealizowany podobny obiekt, czy możliwe jest jego obejrzenie,
— jak wygląda otoczenie działki, czy jest opracowana ocena oddziaływania na środowisko obiektu, co z niej wynika dla projektu prac geologicznych,
— jakie są wymagania obiektu w zakresie infrastruktury podziemnej,
— czy są dokumentacje geologiczno-inżynierskie dla sąsiednich terenów, profile otworów i studni,
— dane z literatury dotyczące obszaru, na którym znajduje się obiekt.

Rodzaj i liczbę niezbędnych punktów badawczych oraz ich rozmieszczenie ustala się zależnie od stopnia wstępnego rozpoznania geologicznego terenu, warunków gruntowych i wodnych.
oraz projektowanej zabudowy (tab. 23). Nowe punkty sytuuje się zwykle 2–3 m poza obrysem budynku, a w przypadku budowli wielonawowych również w osiach słupów wewnętrznych. Dla jednego budynku o powierzchni mniejszej niż 600 m², przy braku otworów w sąsiedztwie, należy wykonać co najmniej trzy otwory wiertnicze lub szurfy w przypadku występowania gruntów litych lub ich zwietrzelin. Dla obiektów o powierzchni większej niż 600 m² liczbę otworów lub szurfów należy zwiększać, przy czym odległość między nimi nie powinna przekraczać 30–50 m.

Głębokość otworów przy rozpoznaniu gruntu pod budynki powinna wynosić co najmniej głębokość posadowienia budynku + 2B w przypadku posadowienia na ławach i stopach, gdzie B — przypuszczalna szerokość ławy lub większego wymiaru stopy, lecz nie mniej niż 3 m. W przypadku posadowienia na płycie — głębokość posadowienia budynku + mniejszy wymiar rzutu budynku. W przypadku stwierdzenia w poziomie poniżej zakładanej głębokości wiercen gruntów organicznych lub spoistych miękkoplastycznych, należy otwory przegłębić do wyjaśnienia głębokości występowania gruntów słabych.

Rozpoznanie pod głębokie posadowienie wymaga siatki wiercen jak dla budynków lub gęściej, gdy należy okonturować obszar występowania gruntów silnie odkształcalnych (organicznych, spoistych, płynnych lub miękkoplastycznych).

Rozpoznanie pod budynki z głębokim posadowieniem (kilka kondygnacji piwnic, budynki na palach) należy wykonywać do głębokości co najmniej:

a) założenia głębokiego posadowienia (ścian szczelinowych czy konstrukcji osłonowych wykopu) + 5 m,

b) co najmniej jeden otwór powinien spełniać wymagania dotyczące jak posadowienia na płycie.

Gdy podłoże jest praktycznie nieodkształcalne można stosować jedynie warunek a.

1.4. Badania terenowe

Oprocz wiercen i sondowań oraz innych badań wykonywanych zgodnie z rozdziałem B.5 należy podczas prac terenowych wykonywać dodatkowe obserwacje. Są to:

— zbadanie głębokości posadowienia i zachowania się konstrukcji obiektów sąsiednich,
— zebranie materiałów i sprawdzenie w terenie głębokości ułożenia istniejących instalacji podziemnych,
— obserwacje w sąsiednich budynkach podpiwniczonych, czy nie były zalane wodą (w jakich okresach i do jakich poziomów),
— obserwacje maksymalnych poziomów wód w rzekach, strumykach, ciekach wodnych i zbiornikach,
— szczegółowe rozpoznanie ukształtowania terenu oraz możliwości odwodnienia powierzchniowego,
— zbadanie możliwości zastosowania drenażu z grawitacyjnym odprowadzeniem wód gruntowych,
— zbadanie, czy na rozpoznanej działce nie istniała dawniej zabudowa (jeśli tak, to jaka?),
— ustalenie, czy w podłożu istnieją fragmenty starych fundamentów lub instalacji podziemnych.

1.5. Badania laboratoryjne

Z pobranych w trakcie badań terenowych próbek należy wykonać badania laboratoryjne identyfikacyjne (zawsze) oraz wytrzymałości i odkształtności gruntów w miarę potrzeb dla II i III kategorii geotechnicznej. Liczbę i rodzaj badań laboratoryjnych należy określić w programie badań geologicznych zgodnie z zasadami rozdziału B.6.

1.6. Dokumentacja z badań

Dokumentację z badań należy wykonać zgodnie z rozdziałem B.9. Dokumentacja musi zawierać w części graficznej:
— plan lokalizacji wiercien,
— przekroje geologiczne uwzględniające genetykę, litologię, stan gruntów,
— tabelę właściwości gruntów przy uogólnieniu zbadanych profilów do jednorodnych warstw,
— w miarę potrzeb mapy stropów, miąższości itp. wyróżnionych warstw.

W części tekstowej dokumentacja powinna zawierać wszystkie informacje o terenie, budowie geologicznej, właściwościach gruntów. Dodatkowo przy dokumentacjach budynków należy rozpatrzyć następujące problemy:
— wielkość i kształt budynku w rzucie, przeznaczenie budynku, liczbę kondygnacji, rozmieszczenie dylatacji, lokalizację budynków sąsiednich,
— rodzaj konstrukcji i układ elementów nośnych (konstrukcja szkieletowa, halowa, ściany nośne podłużne lub poprzeczne, tarczownice, lupiny, sklepienia itp.) oraz ich wrażliwość na nie-równomierne osiadymania,
— stosunek obciążeń stałych do zmiennych, przebieg wzrostu obciążeń zmiennych w czasie,
— wielkość i zróżnicowanie nacisków,
— rzędne poziomu parteru i terenu zaprojektowanego i istniejącego oraz poszczególnych części fundamentów i pomieszczeń podziemnych,
— rozmieszczenie piwnic w planie i pionie,
— rodzaj i charakter dynamicznych obciążeń (jeśli występują),
— graniczne wartości wielkości osiadań w czasie oraz przechyleń obiektów budowlanych,
— przewidywane podniesienie terenu istniejącego (rampy, dojazdy) lub wykopy po wykonaniu stanu zerowego,
— konieczność trwałego lub na czas robót odwodnienia terenu, wykopu fundamentalnego lub podpiwniczeń oraz warunki eksploatacji, np. możliwości przemarzania gruntu pod posadzkami chłodni składowych, możliwości przenikania agresywnych ścieków produkcyjnych pod posadzki i fundamenty, wysokie temperatury pod fundamentami pieców i kotłów,
— warunki eksploatacji dróg, placów, składowisk, bocznic kolejowych (ramp) oraz głębokości ułożenia sieci kanalizacyjnych (ścieki, wody opadowe, ścieki przemysłowe), przewodów i kabli,
— rozpoznanie obiektów ochrony środowiska.

1.7. Awaria lub katastrofa

Z punktu widzenia geologiczno-inżynierskiego uszkodzenia i awarie budowli można podzielić na dwie grupy:
— awarie powstałe bez udziału podłożu i fundamentów, np. rysy i pęknięcia wywołane skurczem elementów budowli, pęknięcia i zawalenia się stropów nadmiernie obciążonych, awarie wywołane nieprawidłową kolejnością montażu budowli itp.,
— awarie powstałe na skutek odkształceń podłożu gruntu i fundamentów oraz braku odpowiedniego przygotowania budowli do przeniesienia odkształceń podłożu.

W przypadku zaistnienia awarii lub katastrofy należy na początku określić, czy zdarzenie może mieć przyczynę związane z podłożem.

Przyczyny, które mogą wywołać odkształcenie podłożu gruntu i fundamentów, to:
— nierównomierna i duża ściśliwość podłożu gruntu (np. występowanie pod częścią budynku soczewek gruntów organicznych lub nie zagęszczonych gruntów nasypowych),
— duża różnica obciążień fundamentów nie zdylatowanych części budowli,
— przekroczenie wytrzymałości gruntu (wypieranie gruntu spod fundamentu, np. przy małej głębokości posadowienia fundamentów względem przyległego naziomu),
— ubytek gruntu pod fundamentami spowodowany np. podmyciem i wypłukiwaniem gruntu, odkrycie fundamentów istniejącej budowli na całej długości (ściany szczytowe) i powstanie wypierania gruntu spod fundamentu,
— przemarzanie lub pęcznienie i wysychanie gruntu pod fundamentami budowli (podłoże z gruntów spoistych),
— pęknięcie przewodów wodociągowych lub kanalizacyjnych i uplastycznienie gruntów spoistych albo rozluźnienie gruntów piaszczystych pod fundamentami budowli,
— przedostawanie się wody opadowej z dachów budynków lub z terenu przyległego do budynku (jest to szczególnie niebezpieczne przy występowaniu w podłożu lessów i gruntów ekspansywnych, nie będących w stanie nasycenia $S_r < 0.95$),
— wykonanie nowej budowli w sąsiedztwie istniejącej,
— późniejsze założenie sieci wodociągowo-kanalizacyjnej przy fundamentach istniejącego budynku na głębokości większej od poziomu posadowienia fundamentów,
— późniejsze wykonanie w bliskiej odległości od istniejącego budynku wykopów lub nasypów,
— spowodowanie w bezpośrednim sąsiedztwie istniejącego budynku obniżenia zwierciadła wody gruntowej (rozluźnienie naturalnej struktury gruntów piaszczystych pod fundamentami istniejącego budynku),
— podbijaanie istniejących fundamentów,
— wstrząsy wywołane obciążeniami komunikacyjnymi lub innymi drganiami.

Pierwsze oględziny terenu i sąsiedztwa oraz uszkodzonej budowli powinny już wskazać kierunek badań, głównie czy awaria ma przyczyny gruntowe. Wykrycie przyczyn powstawania uszkodzeń to podstawowa czynność, od której należy zacząć, by opracować program badań.

W przypadku wykonania nowych obiektów przy istniejących fundamentach badania powinny być przeprowadzone na głębokości około 3–5 m poniżej poziomu posadowienia. Badania podpowłowe i laboratoryjne gruntów powinny dostarczać parametrów, które są potrzebne do obliczeń zabezpieczeń.

Wiercenia i badania powinny obejmować przede wszystkim te miejsca, w których powstały pęknięcia konstrukcji budynku i inne widoczne uszkodzenia. W przypadku występowania w podłożu gruntów o dużej ściśliwości (np. namulów, torfów, gruntów spoistych w stanie miękko plastycznym albo gruntów nasypowych) należy je okonturować w planie i przekroju.

W razie wykonania w bezpośrednim sąsiedztwie uszkodzonego budynku nowych obiektów należy zbadać, czy ich wykonanie nie wpłynie na powstanie uszkodzeń, np. wykonanie głębszych wykopów przy istniejących budynkach może naruszyć stateczność tych obiektów (obrót, wypieranie gruntu spod fundamentu i inne).

Niezależnie od badań podłoża należy:
 a) zbadać rodzaj i stan fundamentów budynku, głębokość posadowienia (wykonać odkrywki fundamentów),
 b) wykonać inwentaryzację fundamentów,
 c) wykonać inwentaryzację powstałych uszkodzeń i zebrać informacje o czasie pojawienia się rys, pęknięć i innych odkształceń konstrukcji budowli.

2. BUDOWNICTWO WODNE

2.1. Dane ogólne

Ze względu na niepowtarzalny, prototypowy charakter każdego stopnia wodnego, określenie szczegółowego zakresu badań nie jest możliwe. Z tego powodu niniejsze wytyczne zawierają ogólne wskazówki w formie wyszczególnienia hasel lub zagadnień, które w trakcie badań, a szczególnie podczas projektowania prac geologicznych, należy rozwiązać. Propozycje dotyczące rodzajów badań i ich zakresu mają charakter orientacyjny i muszą być każdorazowo
dokładnie przystosowane do konkretnych warunków geologicznych i wymagań techniczno-budowlanych przy stałej współpracy z projektantem – hydrotechnikiem.

Projekt prac należy opracować zgodnie z zasadami ogólnymi podanymi w rozdziale A. Ze względu na charakter inwestycji projekt prac geologicznych powinien obejmować odpowiednie badania dla całego obszaru inwestycji (zaporę czołową, boczną, zbiornik, złoża, drogi itp.), wraz z obszarem wpływu realizacji stopnia wodnego na otoczenie z obiektami towarzyszącymi oraz z uwzględnieniem możliwych wariantów lokalizacji szczególnej obiektów.

Dla większych inwestycji hydrotechnicznych należy rozważyć celowość opracowania szczegółowego harmonogramu, najlepiej metodą decydujących ciągów. Obiekty hydrotechniczne należą do tych inwestycji, dla których wykonuje się prawie wszystkie roboty i badania wymienione w tabeli 1.

2.2. Kartowanie geologiczno-inżynierskie

W celu znacznego uproszczenia i ułatwienia czynności podczas kartowania geologiczno-inżynierskiego zaleca się korzystanie ze stereogramów zdjęć lotniczych i cyfrowej ortofotomapy, szczególnie w przypadku stosowania komputerowego wspomagania projektowania obiektów z wykorzystaniem cyfrowego modelu terenu. Ogólny schemat i współzależność czynności projektanta, geodety i geologa podano na rysunku 9.

Kartowanie geologiczno-inżynierskie należy wykonywać zgodnie z projektem prac, z tym że dokładność (gęstość punktów dokumentacyjnych na 1 km²) należy ścisłe uzależnić od stopnia złożoności budowy geologicznej i charakterystyki obiektów hydrotechnicznych (Instrukcja..., 1998a). W skalach 1:5000–1:25 000 kartuje się zwykle czaszę zbiornika zapory, obszary przyлегłe i obszary wpływu piętrzenia. Obszar wpływu zbiornika obejmuje sąsiedztwo do linii, wzdłuż której spodziewane podniesienie wód gruntowych pod wpływem piętrzenia będzie wynosić około 10 cm.

Z większą dokładnością odpowiadającą skali 1:5000–1:10 000 należy kartować obszary występowania torfów i namulisk oraz występowania zjawisk geodynamicznych. Rejon zapory czołowej, szczególnie w przypadku badań w kilku wariantach przy skomplikowanej budowie geologicznej, powinien osiągnąć dokładność rozpoznania wierceniami odpowiadającą skali 1:500–1:5000. Uwaga powyższa dotyczy również małych obszarów występowania intensywnych zjawisk geodynamicznych na brzegach zbiornika, a szczególnie w przyczółkach zapór.

2.3. Badania geofizyczne masywów skalnych

W celu ogólnego rozpoznania masywów skalnych w rejonie zapór stosuje się dwie główne grupy metod – geoelektryczne i sejsmiczne.

Z metod geoelektrycznych są przydatne:
— metoda elektrooporowa stosowana głównie do wydzianania zespołów litologicznych w masywie skalnym,
— metoda sondowań kołowych pozwalająca określić dominujące biegi spękają i zmiany w intensywności występowania spękąń ze wzrostem głębokości.
Rys. 9. Schemat organizacji projektowania i badań geologiczno-inżynierskich dla stopnia wodnego
Z metod sejsmicznych stosuje się:
— metodę refrakcyjną do określania zasięgu stref zwietrzenia i odprężenia, granic poszcze-
gólnych kompleksów litologicznych (cełowe interpretowanie w nawiązaniu do wyników uzys-
kanych metodą elektrooporową), zmienności wartości modułów sprężystości i liczby Poissona,
przebiegu dyslokacji nieciągłych (uskoków),
— metodę prześwietlania sejsmicznego do wykrywania lokalnych niejednorodności masy-
wu, np. kawern, chodników, sztolni,
— metodę akustyczną (stosowane dwie metody: profilowania akustycznego i prześwietlania —
międzyotworową) do określania szczelinowości podłoża skalnego (określa się tzw.
wschódczyniki szczelinowości istotne z punktu widzenia zdolności przepuszczalności wody
i kontroli skuteczności cementacji), strefy naruszenia maszywu wokół wyrobisk i badania jakości
betonu w budowli piętrzącej.
W powiązaniu z metodami teledetekcyjnymi, szczególnie z interpretacją zdjęć satelitarnych,
mogą być stosowane metody telluryczne i magnetotelluryczne w badaniach regionalnych głębó-
skich struktur geologicznych (szczególnie dyslokacji w podłożu skalnym pod przykryciem
gruntami miąższości przeważnie do kilkunastu metrów) i pomiarów terenu pierwotnego.

2.4. Badania geofizyczne na Niżu Polskim

W celu rozpoznania podłoża gruntowego stosuje się:
— metodę elektrooporową (s sondowanie i profilowanie), która z wystarczającą dokładnością
pozwala w nawiązaniu do reperowych wierczeń wyznaczyć występowanie i przebieg głównych
warstw,
— metodę polaryzacji wzbudzonej, stosowaną jako uzupełnienie metody elektrooporowej
w przypadku występowania mało kontrastowych sekwencji warstw piaszczysto-ilastych,
— metodę sejsmiki refrakcyjnej (inżynierskiej) przydatnej w warunkach płytkiego występo-
wania podłoża skalnego (do określenia stropu podłoża skalnego oraz miąższości strefy zwie-
trzalnej),
— metodę radiofalową (VLP) do lokalizacji płytkiej tektoniki,
— metodę trójelektrodową do pomiaru oporu właściwego gruntu, szczególnie przydatną do
przypowierzchniowego rozpoznania warstw gruntów do głębokości 10–15 m; często stosowana
w układzie sondy uniwersalnej, gdzie w połączeniu z metodami radiometrycznymi pozwala
szczegółowo rozpoznać zmiany właściwości podłoża gruntowego; znajduje również duże zasto-
sowanie w dokładnym określaniu ekranów izolujących.

Do określenia ruchu wód (kierunek, prędkość), współczynnika filtracji, kontaktów hydraulicz-
nych warstw i uprzywilejowanych dróg krążenia stosowane są:
— metoda potencjałów własnych do lokalizacji obszarów, gdzie następuje wpływ lub infil-
tracja wód przez warstwy przypowierzchniowe,
— metody elektrooporowe, które w sprzyjających warunkach umożliwiają poprzez związki
korelacyjne określić średni współczynnik filtracji warstw wodonośnych na podstawie oporności
pozornej,
— metody wskaźnikowe, stosowane do wyznaczania prędkości i kierunku ruchu wód,
współczynnika filtracji utworów, dróg krążenia i stref ucieczek wód ze zbiorników.
W celu określenia przewodnictwa wody i jej mineralizacji są stosowane metody geoelektryczne, które w wyniku kartowania geofizycznego terenu pozwalają określić kontakty wód o różnym przewodnictwie.

Dobór metod i lokalizacji pomiarów należy projektować na podstawie wcześniej wykonanej interpretacji geologicznej zdjęć lotniczych, map geologicznych i materiałów archiwalnych. W poszczególnych przypadkach mogą znaleźć się oprócz wymienionych następujące metody: magnetyczna, geofizyki jądrowej i wiertniczej (profilowanie), geotermiczna, grawimetryczna i georadarowa.

Badania geofizyczne należy wykonać w dwóch lub więcej etapach, przy czym pierwszy etap badań geofizycznych w celu ogólnego rozpoznania budowy geologicznej powinien wyprzedzać wiercenia.

W trakcie opracowywania planu technicznego badań geofizycznych zaleca się wykonanie krótkiego zwiadu terenowego, którego celem jest określenie możliwości stosowania danej metody geofizycznej, kontrastu geofizycznego i optymalnych warunków metodycznych. Należy dążyć do wykorzystania otworów archiwalnych jako otworów reperowych.

2.5. Roboty geologiczne

Roboty geologiczne dostarczają informacji bezpośrednich i najbardziej dokładnych. Są one jednak w stosunku do innych badań bardzo drogie i punktowe w przypadku wierczeń i szybków lub liniowe w przypadku rowów i sztolni. Duże koszty zmuszają do bardzo oszczędnego wykonywania tego rodzaju robót geologicznych. W razie konieczności stwierdzenia powierzchni poślizgu osuwisk i pobrania próbek gruntów i skał są one jednak niezbędne.

2.6. Badania polowe skał

Parametry fizyczne i mechaniczne wyznacza się w różnego rodzaju wyrobiskach powierzchniowych i wględnich. Lokalizacja stanowisk badawczych powinna być tak zaprojektowana, aby z jednej strony uzyskane wyniki były reprezentatywne dla poszczególnych kompleksów litologicznych, a z drugiej charakteryzowały skały na dużym obszarze. Właściwe jest uzupełnienie terenowych badań wytrzymałościowych skał wynikami badań próbek skalnych w laboratorium.

Badaniami polowymi są opisane następujące właściwości skał:
— wytrzymałość na ściananie, głównie metodą bezpośredniego ścianania,
— moduł sprężystości i moduł odkształcenia, przede wszystkim metodą jednoosiowego obciążenia,
— wodochłonność w otworach wiertniczych.

W prowadzeniu wierczeń z ciągłym rdzeniowaniem, wykonywaniu szybków, sztolni itp. należy zbierać następujące informacje:
— opis makroskopowy skał — rodzaj skały, struktura, tekstura, uziarnienie, spękania, pomiary skleroskopem,
— wydzielenie przewarstwień zbudowanych ze skał bardzo miękkich, rozsypanych, szybko rozmakających, kruchych,
— o technologii wykonywania prac, wierceń.

W dokumentowaniu podłoża obiektów hydrotechnicznych szczególną uwagę należy zwrócić na opracowanie zagadnień szczelinowatości masywu. Szczelinowatość jako podstawowa cecha strukturalna ma decydujące znaczenie przy rozpatrywaniu wytrzymałości, odkształcalności i przepuszczalności masywów skalnych.

Konieczna jest znajomość następujących parametrów szczelinowatości:
— orientacji przestrzennej spękania,
— liniowych wymiarów spękania,
— stopnia spękania masywu skalnego,
— stopnia rozdzielności masywu skalnego,
— porowatości szczelinowej,
— cech fizycznych powierzchni spękania.

Badania szczelinowatości należy wykonywać:
— w odsłonięciach naturalnych i sztucznych,
— w wyrobiskach powierzchniowych i podziemnych,
— na rdzeniach wiertniczych,
— metodami pośrednimi:
 a) sondowania telewizyjnego i fotograficznego,
 b) sondowania i profilowania sejsmicznego i elektrooporowego,
 c) profilowania gęstościowego gamma-gamma,
 d) aero- i hydrodynamicznymi.

2.7. Badania polowe gruntów słabych

W rozpoznawaniu słabego podłoża podstawowe są badania metodami polowymi. Badania laboratoryjne ze względu na strukturę gruntów słabych powinny być w zasadzie ograniczone do oznaczania cech wskaźnikowych (np. wilgotność, zawartość części organicznych, zawartość węgla wapnia) i badań uzupełniających.

Do okonturowania gruntów słabych z metod polowych przydatne są sondowania sondą wkręcącą i wciskaną. Sondowania umożliwiają w sposób ciągły scharakteryzowanie jakościowej zmienności wytrzymałości gruntów słabych z głębokością.

Dla projektowania decydujące znaczenie ma określenie:
— wytrzymałości na ścianie sondą obrotową,
— odkształcalności presjometrem i świadrem talerzowym.

2.8. Badania polowe gruntów gruboziarnistych i kamienistych

Badaniami polowymi można wykonać określenie następujących parametrów charakteryzujących grunty gruboziarniste:
— ciężar objętościowy — metodą pomiaru objętości wykopów (szurfów),
— odkształcalność i wytrzymałość gruntów — próby obciążenie płytą,
— wodoprzepuszczalność — metodą zalewania wykopów (szurfów).
W celu kontroli osiądań nasypów zbudowanych z gruntów gruboziarnistych można stosować repery powierzchniowe i w głębokich.

2.9. Badania polowe zwietrzelin

Badania terenowe zwietrzelin w szczególnych przypadkach powinny obejmować określenie:
— ciężaru objętościowego zwietrzelin metodą wpkupu,
— kąta tarcia wewnętrznego i spójności we wpkupie,
— modułu odkształcenia pierwotnego i wtórnego płytą sztywną,
— zmienności wytrzymałości z głębokością presjometrem,
— współczynnika filtracji metodą połową.

2.10. Badania hydrogeologiczne

Rozpoznanie warunków hydrogeologicznych w rejonie projektowanej zapory i zbiornika powinno obejmować następujące elementy:
— stany i wielkości przepływów wód w ujęciu czasowym,
— powodzi, zlodzenia,
— stopień zanieczyszczenia wód, ilość materiału zawieszonego,
— poziomy wodonośne o zwierciadle swobodnym, napiętym, lokalnie napiętym (określić zasięg),
— inne formy występowania wód (np. zawieszone) o znaczeniu praktycznym dla projektu,
— sączenia i podmokłości, szczególnie występujące na zboczach zbiornika,
— głębokość występowania podłoża nieprzepuszczalnego lub spąg warstwy napinającej,
— określenie kierunków przepływu wód gruntowych,
— określenie źródeł zasilania wód gruntowych,
— określenie wahań wód gruntowych,
— ocena mineralizacji wód gruntowych,
— określenie współczynników filtracji.

2.11. Oznaczenie współczynnika filtracji

Współczynnik filtracji określa się:
— próbnymi pompowaniem w hydrowężle,
— metodą napływu wody do studni,
— metodą zalewania krótkiego piezometru (metoda szczególnie przydatna na obszarach zagrożonych podtopieniem),
— metodami pośrednimi na podstawie krzywej uziarnienia,
— metodami laboratoryjnymi.

Wydzielenie starych zagrzebanych dolin rzecznych i obniżeń umożliwiają metody geoelektryczne i metoda zalewania krótkiego piezometru.

Wyniki badań właściwości filtracyjnych podłoża zapory oraz materiałów lokalnych są niezbędne dla:
— obliczenia filtracji przez podłoże i korpus zapory,
— określania warunków użytkowania stopnia wodnego,
— określania trwałości i stateczności podłoża i zapory,
— określenie ilości wody przesączającej przez podłoże i przez zaporę,
— dokonania prognozy wpływu budowy zbiornika na otoczenie.

W nawiązaniu do modelu zlewni, a tym samym do typu przyszłego zbiornika wodnego, należy określić:
— warunki drenażu zlewni z wydzieleniem spływu bezpośredniego,
— położenia zwierciadła wody, jego wahania, kierunki spływu, obszary o wzmożonej infiltacji wód.

2.12. Zależność badań od etapu projektowania obiektów hydrotechnicznych

Badania geologiczno-inżynierskie mogą być wykonane w zależności od potrzeb w 5. etapach:
1) etap rozpoznawczy (dla studium przedprojektowego),
2) etap szczegółowy (dla koncepcji programowo-przestrzennej inwestycji),
3) etap uzupełniający (dla projektu technicznego),
4) etap budowy (dla okresu budowy stopnia wodnego),
5) etap eksploatacji (dla początku eksploatacji stopnia).

Przeprowadzenie wszystkich etapów badań jest celowe dla obiektów dużych, o wielkich nakładach finansowych, wykonywanych w trudnych warunkach geologicznych oraz dla zbiorników „zawieszonych” i „podniesionych” (rys. 10).

Najważniejszymi etapami badań są: rozpoznawczy i szczegółowy. Dobre rozpoznanie podstawowych problemów geologiczno-inżynierskich na etapie rozpoznawczym zezwala na prawidłową ocenę trudności w wykonawstwie, na dobre oszacowanie kosztów i ewentualne wczesne odstąpienie od dalszych, bardziej kosztownych badań i realizacji stopnia wodnego. Na badania na etapie rozpoznawczym przypada około 10% kosztów przewidywanych w cyklu projektowym (pierwsze 3 etapy), a na etap szczegółowy 60–80%. Wynika z tego, że koszty badań etapu uzupełniającego stanowią 10–30% całości (bez uwzględnienia etapów budowy i eksploatacji).

Należy dążyć, aby w miarę możliwości badania podłoża wykonać w dwóch etapach, a w przypadku inwestycji małych, szczególnie stopni wodnych dla celów rolniczych o piętrzeniu nie wyższym niż 5–7 m, w jednym etapie badań. O liczbie etapów decyduje biuro projektów lub inwestor. Przed podjęciem decyzji zaleca się jednak zasięgnięcie opinii jednostki geologicznej wykonującej badania.
Rys. 10. Klasyfikacja zbiorników wodnych (typowe schematy hydrogeologiczne określające zakres badań geologiczno-inżynierskich w czaszy zbiornika)

1 — zwierciadło wody gruntuowej przed spiętrzeniem, 2 — zwierciadło wody gruntuowej po spiętrzeniu, 3 — aluwia,
4 — warstwa wodoszczelna
2.12.1. Zakres badań na etapie rozpoznawczym

Zadaniem geologicznym na etapie rozpoznawczym jest:

a) określenie odpowiedniego modelu budowy geologicznej, w tym następstwa warstw, ich geometrii i zmienności, warunków wodnych i właściwości fizycznych i mechanicznych podłoża,
b) określenie możliwości i celowości realizacji stopnia wodnego ze względu na warunki geologiczne,
c) ocena możliwości ucieczek wód z projektowanego zbiornika,
d) porównanie warunków geologicznych w wytypowanych wariantach lokalizacji stopnia wodnego i wybór optymalnego wariantu,
e) jakościowa ocena nosności i stateczności podłoża obiektów stopnia wodnego, a przede wszystkim brzegów projektowanego zbiornika,
f) wstępna ocena innych procesów egzogeodynamicznych,
g) określenie szkodliwości wpływu stopnia wodnego na otoczenie,
h) rozpoznanie możliwości zaopatrzenia inwestycji w materiały budowlane, szczególnie lokalne,
i) rozpoczęcie obserwacji w podstawowej sieci punktów hydrogeologicznych w celu prognozy orientacyjnej, która będzie opracowana na etapie badań szczegółowych,
j) ocena sąsiednich obszarów pod kątem możliwości występowania lepszych warunków geologiczno-inżynierskich do lokalizacji stopnia wodnego,
k) określenie wstępne zagadnień do rozwiązania w następnym etapie, badań z propozycją zakresu badań,
l) wstępna ocena oddziaływania stopnia wodnego na środowisko.

Z zestawienia zadań wynika, że na etapie badań rozpoznawczych należy określić wszystkie główne problemy geologiczno-inżynierskie, natomiast ocenę ich wpływu na projektowany stopień wodny należy opracować z takim przybliżeniem, aby możliwe było oszacowanie kosztów budowy z dokładnością określoną przez biuro projektowe.

Zakres badań zależy od:
— dotychczasowego stopnia rozpoznania,
— wielkości inwestycji,
— stopnia skomplikowania budowy geologicznej.

Opracowanie wymienionych problemów opiera się na:
— pełnym wykorzystaniu istniejących materiałów geologicznych, jak dokumentację geologiczno-inżynierską, hydrogeologiczne, surowcowe, profilów wiercien, opracowania geofizycznych i literatury,
— przeglądzie terenu,
— wstępnej i szczegółowej interpretacji zdjęć lotniczych, a także satelitarnych,
— pracach terenowych.

Prace terenowe obejmują:

a) zdjęcia geologiczno-inżynierskie w skali od 1:5000 do 1:25 000, szczególnie obszarów zapór, występowania torfów i namulisk oraz o czynnych procesach egzogeodynamicznych,
b) wiercenia i roboty ziemne wzdłuż przekroju zlokalizowanego w osi stopnia wodnego we wszystkich wariantach; wiercenia wykonuje się na tym etapie w odległości 100–500 m jedno od drugiego do głębokości występowania pierwszej warstwy nieprzepuszczalnej (przy jej nawierceniu do 3 m), nie głębiej niż 3 wysokości piętrzenia,
c) badania geofizyczne, przede wszystkim elektrooporowe wzdłuż przekrojów wiercen, które muszą wyprzedzać wiercenia, tak aby było możliwe ich lokalizowanie w punktach węzłowych (anomalnych),

d) badania polowe.

W skład dokumentacji dla etapu rozpoznawczego wchodzą przede wszystkim:

1) mapy: dokumentacyjna, geologiczna, geologiczno-inżynierska, hydrogeologiczna, w skalach od 1:5000 do 1:50 000, a dla złož materiałów budowlanych w skalach od 1:2000 do 1:10 000,

2) przekroje geologiczne,

3) tabele, zestawienia wyników badań, wykresy,

4) tekst.

2.12.2. Zakres badań na etapie szczegółowym

Zadaniem geologicznym na etapie badań szczegółowych jest przede wszystkim:

a. Dokładne określenie budowy geologicznej podłoża pod poszczególne obiekty stopnia wodnego, a w szczególności geometrii warstw, ich zmienności, cech litologicznych, genezy i wieku.

b. Określenie tektoniki ciągłej i nieciągłej ze szczególnym uwzględnieniem szczelinowości.

c. Dokładne określenie warunków hydrogeologicznych, w tym geometrii i charakteru warstw wodonośnych, granicznych stanów wód gruntowych, ich chemizmu, parametrów filtracyjnych, wodoszczelności, kierunku spływu itp. Należy określić również typ zbiornika oraz możliwość kierunku i wielkość ucieczek wód z projektowanego zbiornika.

d. Dokładne wydzielenie warstw geotechnicznych, a dla nich określenie uśrednionych wartości parametrów fizyczno-mechanicznych.

e. Jakościowa i ilościowa ocena procesów egzogeodynamicznych (kras, osuwiska, sufozja, abrazja, erozja, akumulacja), szczególnie na przyciskówach zapory. Istotne jest określenie stateczności zboczów zarówno w obecnym stanie, jak i prognozy ich zachowania w zmienionych warunkach (w okresach budowy i eksploatacji).

f. Określenie jakości i ilości materiałów budowlanych na obiekty stopnia wodnego,

g. Określenie prognozy orientacyjnej wpływu stopnia wodnego na obszary przyległe.

Ogólnie prace i badania geologiczne powinny być tak zaprojektowane, aby ich realizacja umożliwiała prawidłowe projektowanie obiektów, obliczenie stateczności i osiadania, jak również filtracji i odporności filtracyjnej.

Rozpoznanie podłoża obiektów budowlanych stopnia wodnego wymaga kompleksowych badań.

Zdjęcia geologiczno-inżynierskie. Prace kartograficzne obejmują szczegółową interpretację zdjęć lotniczych, panchromatycznych i radarowych, jak również prace zdjęciowe w terenie. Zdjęciem należy objąć obiekty stopnia wraz z całym zbiornikiem i jego otoczeniem w zakresie jego wpływu.

Celem prac kartograficznych na tym etapie jest:

— dokładna rejonizacja występowania gruntów i skał, przede wszystkim torfów i namułów,

— lokalizacja warstw nieprzepuszczań w płytkim podłożu,

— dokładna lokalizacja form i zjawisk egzogeodynamicznych,
— określenie kierunków spływu i hydroizohipso dla stanów ekstremalnych (na podstawie wyniku zdjęcia komplesowego i obserwacji wód gruntowych),
— określenie obszarów do bardziej szczegółowych badań,
— wstępne określenie warunków geologiczno-inżynierskich w celu przelożenia dróg,
— określenie prawdopodobnego przebiegu elementów tektoniki wgłębnej na podstawie analizy zdjęć radarowych i satelitarnych.

Dokładność kartowania należy zróżnicować. Dla całości obiektów stopnia wodnego i jego otoczenia można opracować mapę geologiczno-inżynierską komplesową w skalach 1:10 000–1:25 000. W przypadku bogatej treści mapa może składać się z kilku arkuszy, np. arkusz A: rejonizacja gruntów, głębokość występowania warstwy nieprzepuszczalnej i rejonizacja osuwisk; arkusz B: obszary występowania materiałów budowlanych, hydroizohippsy i drogi możliwych ucieczek wody.

Dla rejonu osi stopnia, przyczółków, dla tras dróg i obszarów intensywnych procesów egzo-geodynamicznych można dokładność zdjęcia zwiększyć do skali 1:2000–10 000. W porozumieniu z biurem projektów można przyjąć w wyjątkowych przypadkach bardziej dokładną skalę, co wymaga jednak merytorycznego uzasadnienia w projekcie prac geologicznych.

Zakres prac z wykorzystaniem zdjęć lotniczych przy zastosowaniu technik komputerowych przedstawiono na rysunku 9.

Badania geofizyczne. Badania geofizyczne na tym etapie wykonuje się głównie w celu:
— ogólnego rozpoznania budowy geologicznej, w tym zasypanych rynien, pierwszego poziomu nieprzepuszczalnego itp.,
— racjonalnego lokalizowania wierceń,
— określenia miąższości zwietrzeliny i strefy zwietrzałej,
— wyznaczenia elementów tektoniki, szczególnie uskoków, spęków itp.,
— określenia kierunków płynięcia wody gruntowej, ucieczek wód itp.,
— określenie niektórych właściwości fizyczno-mechanicznych podłoża.

Podstawową metodą geofizyczną określania modelu budowy geologicznej jest elektroporowa, a przy wyznaczeniu właściwości dynamicznych podłoża (dynamiczny moduł sprężystości i wskaźnik Poissona) metoda sejsmoakustyczna.

W trakcie opracowania planu technicznego badań geofizycznych zaleca się wykonanie wizji terenowej, której celem jest określenie możliwości stosowania danej metody geofizycznej, kontrastu geofizycznego i optymalnych warunków metodycznych.

Wiercenia. Celem wykonania wierceń na etapie badań szczegółowych jest:
— określenie miąższości, litologii, zawodnienia i własności gruntów i skał, także pod kątem ich przydatności jako materiałów budowlanych,
— określenie strefy zwietrzałej lub całego profilu wietrzeniowego,
— określenie stopnia i charakteru spęków skał,
— przeprowadzenie badań połowych właściwości filtracyjnych, wodochłonności i cementochłonności podłoża oraz właściwości fizyczno-mechanicznych,
— obserwacji wód gruntowych i określenia ich wahań,
— pobrania odpowiednich próbek w celu określania właściwości fizyczno-mechanicznych, składu chemicznego i agresywności wód.

Sposób wykonania wierceń mechanicznych powinien zezwalać na pełne, minimum 90-procentowe rdzeniowanie przy użyciu wody jako płuczu. Średnica otworu musi być dostosowana do projektowanych badań w otworze i do pobierania próbek odpowiedniej wielkości.
Głębokość otworów należy ustalać uwzględniając następujące kryteria:
— 1,5–3,0 \(H \) (\(H \) — wysokość projektowanego piętrzenia),
— wodochłonność przy ciśnieniu równym 1,5 \(H \), wynosząca 0,01–0,03 l/s/m/1,5 \(H \) (dla zapór górskich),
— głębokość występowania pierwszej warstwy nieprzepuszczalnej (dla zapór nizinnych),
— miąższość pokrywy zwietrzeliny, gruntów aluwialnych w czaszy zbiornika i na zboczach,
— głębokość strefy pośśligu osuwisk.

Głębokości otworów 1,5 \(H \) należy projektować dla zapór bocznych o piętrzeniu do 5 m, natomiast 3,0 \(H \) dla osi zapór czołowych, betonowych, w przekroju uszczelniania pionowego. Wartość kryterium Lugeona należy ustalić z biurem projektów.

Orientacyjną liczbę przekrojów i odległość między otworami wiertniczymi w rejonie osi zapory podano w tabeli 24.

Mniejszą liczbę otworów i większe odległości między otworami należy projektować dla zapór niższych (do 10 m), lokalizowanych w prostych i dobrych warunkach geologiczno-inżynierskich. W skomplikowanych warunkach geologicznych, szczególnie dla zapór betonowych — łukowych, wyrobiska należy zageścić w porozumieniu z biurem projektów.

Pozostałe otworów w rejonie zapory czołowej można zaprojektować i wykonać przekroje pomocnicze. Orientacyjnie zaleca się wykonanie jednego przekroju w górze od rejonu zapory w odległości 100 m, a 1 lub 2 przekroje w dół w strefie około 300 m. Głębokość otworów w przekrojach pomocniczych może wynosić 1–1,5 \(H \) lub do warstwy nieprzepuszczalnej względnie do skalnego podłoża (warstwę nieprzepuszczalną i skalne podłoże uważa się za stwierdzone, jeśli narzędzie wiertnicze zagłębiło się około 2 m poniżej stropu).

Każdy otwór w skalnym podłożu musi być przebadany na wodochłonność. Podczas wykonywania wiercen obowiązuje stały nadzór geologiczny.

W określonych otworach w rejonie zapory czołowej, a szczególnie na przyczółkach oraz w strefach podziemnej wzmoczonej filtracji, należy wykonać określenie właściwości filtracyjnych metodami połowymi, zgodnymi z aktualnymi instrukcjami i wytycznymi. Dla hydrowężłów należy w zasadzie stosować obliczenia metodą filtracji nieustalonej (metoda Hantuscha–Theiss).

Szybiki i sztolnie badawcze. Szybiki i sztolnie badawcze wykonuje się w podłożu skalnym w rejonie osi zapory czołowej oraz na przyczółkach. Ich celem jest:
— stwierdzenie szczegółów budowy geologicznej, a szczególnie litologii skał, biegu i upadu warstw itp.,
— określenie stref uskokowych i ich charakteru,
— określenie jakościowe i ilościowe stopnia szczelinowatości,
— przeprowadzenie badań właściwości fizyczno-mechanicznych in situ,
— określenie profilu wietrzeniowego, strefy poślizgu na obszarach osuwiskowych,
— określenie właściwości hydrogeologicznych masywu skalnego,
— pobranie próbek do badań laboratoryjnych.

Ze ścian wyrobisk należy sporządzić dokładne rysunki w skali od 1:50 do 1:500, a dla fragmentów 1:20, a nawet 1:10. Zaleca się sporządzanie dokumentacji fotograficznej stereoskopowej, uproszczonej (zwykłym aparatem fotograficznym z 2. stanowisk o rozstawie 1/10 do 1/20 odległości fotografowanej ściany).

Rozpoznanie czaszy zbiornika. Rozpoznanie czaszy zbiornika na etapie badań szczegółowych ma na celu:
— określenie możliwości utrzymania wody w zbiorniku, podanie ewentualnych strat, kierunków zmożonej filtracji itp.,
— określenie statyczności zboczy projektowanego zbiornika wodnego,
— określenie występowania torfów z możliwością wypłynięcia,
— określenie lokalizacji i liczby lokalnych złoż materiałów budowlanych.

Określenie możliwości utrzymania wody w projektowanym zbiorniku. Możliwość utrzymania wody w zbiorniku powinna być stwierdzona na etapie badań rozpoznawczych na podstawie wnikliwej analizy map topograficznych i pomiarów wód gruntowych w studniach i wierceniach. W przypadku stwierdzenia, że projektowany zbiornik ma charakter zbiornika zanurzonego, należy zaniechać badań hydrogeologicznych w czaszy zbiornika na etapie badań szczegółowych, a badania ograniczyć do obszarów występowania procesów egzogeodynamicznych i gruntów wypływowych.

Dla zbiorników lub ich części o charakterze zawieszonym lub podwyższonym należy przeprowadzić szczegółowe badania:
— ogólną budowy geologicznej z uwzględnieniem stref szczelinowatości, uskoków itp.,
— głębokości pierwszej warstwy nieprzepuszczalnej,
— właściwości filtracyjnych,
— stref wzmoczonej filtracji,
— wielkości i kierunków ucieczek wody gruntowej.

Badania takie należy przeprowadzić także na obszarach depresyjnych wzdłuż przekrojów prostopadłych do doliny rzeki lub spadzianych kierunków ucieczek wody z projektowanego zbiornika. Wzdłuż linii przekrojów należy wykonać otwory, w których będą wykonane badania połowe współczynnika filtracji i zainstalowane piezometry do stałej obserwacji. Otwory w strefach wzmoczonej filtracji powinny sięgać w zasadzie do pierwszej warstwy nieprzepuszczalnej (+2 m w niej), a odległość między nimi powinna wynosić 50–1000 m w zależności od stopnia złożoności budowy geologicznej.

Określenie możliwości wypłynięcia torfów. Na obszarze występowania torfów należy wykonać sondy penetracyjne (ewentualnie wiercenia w przypadku miąższości torfów większej od 5 m) i szybiki oraz pobrać próbki, których celem jest:
— uszczegółowienie granic występowania torfów,
— określenie możliwości wypłynięcia,
— określenie ich przydatności dla celów opałowych i rolniczych.

Badanie obszarów z procesami egzogeodynamicznymi. Na obszarach o czynnych procesach egzogeodynamicznych należy zagięcieć badania w celu:
— określenia dokładnych granic występowania form osuwiskowych, krasowych itp.,
— określenia ilościowego przebiegu aktualnych procesów i opracowania prognozy zmian po piętrzeniu wód w projektowanym zbiorniku,
— opracowania prognozy abrazji brzegów i akumulacji materiału w projektowanym zbiorniku.

2.12.3. Zakres badań na etapie uzupełniającym

Badania na etapie uzupełniającym wykonuje się tylko dla obszarów, na których nastąpiła zmiana lokalizacji obiektów w wyniku badań szczegółowych lub z innych przyczyn, jak też w celu skontrolowania lub potwierdzenia niedostrzeganej zmiany problemów na poprzednich etapach. W tych przypadkach należy wykonać badania uzupełniające wynikające ze specyfiki terenu i podłoża, kierując się ogólnymi zasadami podanymi w niniejszych wytycznych.
Zakres i wybór badań uzupełniających należy uzgodnić z projektantem—hydrotechnikiem. Należy kontynuować obserwacje stanów wód gruntowych w podstawowej sieci monitoringu.

2.12.4. Zakres badań na etapie budowy

Badania podczas budowy stopnia wodnego przeprowadza się:
— pod obiekt, dla których zaistniała konieczność zmiany lokalizacji w czasie wykonywania projektu technicznego,
— w celu wyjaśnienia przyczyn awarii i znacznego niezgodności stanu faktycznego z danymi zawartymi w dokumentacji,
— w celu określenia parametrów gruntów w nawiązaniu do wymagań projektowych (np. zagęszczenie nasypów),
— w podstawowej sieci obserwacji wód gruntowych jako kontrola zgodności prognozy ze stanem faktycznym,
— w celu kontroli poprawności wykonawstwa robót oraz zgodności warunków gruntowych z przyjętymi w projekcie danego obiektu stopnia wodnego.

Kontrolę wykonawstwa robót ziemnych należy prowadzić zgodnie z normą A Pr PN–B–06050.

2.12.5. Zakres badań na etapie eksploatacji

Obliczenia stateczności zapory i brzegów zbiornika oraz filtracji pod i przez zapory, jak również obliczenia wpływu piętrzenia na otoczenie, oparte na badaniach geologiczno-inżynieryskich i modelowych, są tylko przybliżone. Na ich podstawie nie można przewidzieć wszystkich zjawisk, które wystąpią podczas eksploatacji stopnia wodnego, a szczególnie nie można przewidzieć wpływu wszystkich czynników, w tym szczególnie przypadkowych naturalnych, jak spękania, szczelin, wąskie rynny erozyjne z materiałem dobrze przepuszczalnym, i sztucznych spowodowanych wadliwym wykonawstwem drenażu lub zbyt małym zagęszczeniem. Z tego powodu obserwacji terenowych, szczególnie stanów wód gruntowych, nie wolno przerywać po
zakończeniu badań i budowy, a należy je kontynuować dalej, z tym że podczas próbnego piętrowania wskazane jest zwiększenie częstotliwości dokonywania pomiarów.

Badania geologiczno-inżynierskie na tym etapie mogą być wykonane w celu wyjaśnienia przyczyn ewentualnych awarii i opracowania metod zaradczych.

2.13. Rozpoznanie lokalnych złóż materiałów budowlanych

Lokalne złóż materiałów budowlanych, ich ilość i jakość oraz odległość mają wpływ na wybór lokalizacji i typu zapory. Z tego wynika konieczność określenia możliwości zaopatrzenia inwestycji w lokalne materiały budowlane na etapie badań rozpoznawczych.

Rozpoznanie i określenie przydatności lokalnych złóż materiałów budowlanych opiera się na:

- przeglądu terenu,
- szczegółowej analizie zdjęć lotniczych i kartowaniu geologiczno-inżynierskim,
- badaniach geofizycznych,
- analizie kart rejestracji złóż i dokumentacji złóżowych wykonanych w sąsiedztwie w analogicznych warunkach geologicznych,
- robotach ziemnych i wiertniczych,
- badaniach laboratoryjnych.

Na etapie badań rozpoznawczych ilość materiałów należy określić metodą przybliżoną (szacunkową), a zasoby powinny przekraczać przewidywane zapotrzebowanie co najmniej 2–3-krotnie. Na tym etapie należy też wskazać wszystkie możliwe do eksploatacji złóż w zasięgu do 20 km, a w przypadku ich braku należy omówić możliwości zaopatrzenia inwestycji w surowce z podaniem lokalizacji, odległości i jakości złóż według materiałów archiwalnych i literatury.

Przed przystąpieniem do projektowania badań w celu rozpoznania złóż dla etapu szczegółowego biuro projektów powinno podać dokładne wymagania techniczne (kryteria bilansowości), dotyczące jakości i ilości potrzebnych materiałów w rozbiciu na poszczególne rodzaje złóż.

Badania geofizyczne należy prowadzić w celu uścisknięcia lokalizacji złóż, w nawiązaniu do wykonanych wcześniej wierceń geologiczno-inżynierskich.

Orientacyjne odległości między wyrobiskami dla poszczególnych surowców mineralnych określa tabela 25.

Tabela 25

<table>
<thead>
<tr>
<th>Nazwa surowca</th>
<th>Grupa złóż</th>
<th>Odległość między wyrobiskami (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grunty spoiste na uszczelnienia</td>
<td>I</td>
<td>500–300</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>300–200</td>
</tr>
<tr>
<td>Skalny i kamieni narządu i kruszywo łamane</td>
<td>I</td>
<td>3–5 odłonić lub wyrobisk na 1 km²</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>5–8 odłonić lub wyrobisk na 1 km²</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>300–150</td>
</tr>
<tr>
<td>Kruszywo naturalne piaski, pospolki, żwiry</td>
<td>I</td>
<td>350–250</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>250–150</td>
</tr>
</tbody>
</table>
Rozdziały grup złóż:

I. Złoża lub ich części o prostej budowie geologicznej i miąższości surowca w znacznym stopniu przekraczającej przyjęte granice bilansowości oraz o równomiernej jakości surowca w złożu.

II. Złoża lub ich części o złożonej budowie i miąższości surowca będącej na granicy przyjętej bilansowości oraz nierównomiernej zawartości surowca w złożu.

III. Złoża lub ich części o skomplikowanej budowie geologicznej i bardzo dużej zmienności miąższości i jakości surowca w złożu.

Badania jakości złóż materiałów budowlanych zaleca się wykonać w dwóch etapach (rozpoznawczym i szczegółowym), przy czym suma wyrobisk rozpoznawczych nie powinna być większa od liczby podanej w tabeli 25.

Określone badaniami zasoby materiałów, udokumentowane w kategorii C1, powinny przewyższać zapotrzebowanie co najmniej o 100%, a zasoby udokumentowane w kategorii C2 o 200–300%.

2.14. Prognoza wpływu stopnia wodnego na tereny przyległe

Zakres badań dla prognozy zależy od:
— etapu projektowania urządzeń regulujących warunki wodne w otoczeniu zbiornika wodnego,
— skomplikowania warunków hydrogeologicznych i typu zbiornika,
— charakteru urządzeń odwadniających,
— wielkości obszaru.

Prognozy opracowuje się na różnych etapach budowy zbiornika.

Zbiorniki wodne dzielą się, ze względu na różnice wzajemnego powiązania wód w zbiornikach z wodami gruntowymi, na zbiorniki obniżone i podniesione (rys. 10).

Zbiorniki obniżone to takie, w których woda po piętrzeniu leży niżej od otaczającego terenu, i konsekwenicie zbiornikami podniesionymi nazywa się te, w których zwierciadło wody w zbiorniku jest wyższe od otaczającego terenu. Wynika z tego, że granice zbiornika podniesionego stanowić muszą zapory boczne, a sąsiedni teren jest depresyjny.

Wśród zbiorników obniżonych wyróżniamy zanurzone, półzawieszone i zawieszone.
— Zbiornik zanurzony ma czaszę „zanurzoną” w wodach gruntowych. Jej zwierciadło na działie wód w sąsiedztwie zbiornika jest wyższe od rzędnej piętrzenia. Ze zbiornika tego nie jest możliwa pionowa i pozioma ucieczka wody. Zbiorniki tego typu występują na obszarach, na których głębokość do zwierciadła pierwszego poziomu wody podziemnej jest duża również po piętrzeniu wód i nie wymagają badań progностycznych. Badania te są natomiast niezbędne dla podtypu nizinnego zbiornika zanurzonego, gdy po piętrzeniu, przy płaskim terenie w sąsiedztwie, wystąpi rozległe obszary z podtopieniami, co w zasadniczy sposób zmienia ich przydatność dla budownictwa i rolnictwa, a także leśnictwa. W otoczeniu zbiorników zanurzonych nizinnych obszarów badań obejmuje tarasy zalewowe i nadzalewowe do granicy wysoczyzny i dalej do przecięcia się projektowanej rzędnej piętrzenia wody z hydroizohipsą o tej samej rzędnej.
— Zbiornik półzawieszony, w którym woda komunikuje się w sposób ciągły z wodą gruntową, której rzędna na sąsiednim dziale wód gruntowych jest poniżej piętrzenia (może wystąpić lokalne rozdzielenie między wodą w zbiorniku i gruntowej). Dla tego typu zbiornika możliwe jest pionowe i poziome przepływy wód ze zbiornika. Występuje on prawie wy-łącznie na obszarach o zróżnicowanej morfologii i o szczelinowatym lub skrasso-wałnym środowisku skalnym w podłożu.

Zakres badań dla prognozy wpływu zbiornika na otoczenie na płaskich obszarach nizinnych jest podobny jak dla obszarów przyległych do zbiornika zanurzonego, z tym że dla tego pierwszego dodatkowo trzeba określić wielkość ucieczek i możliwość piętrzenia. Na obszarach górskich prognoza dotyczyć będzie przede wszystkim prognozy możliwości utraty wody w zbiorniku i oszacowania strat przy różnych proponowanych zabiegach uszczelniających.

Dla zbiorników półzawieszonych (podtyp nizinny) obszar do badań prognostycznych jest również bardzo duży i sięga w zasadzie do sąsiednich cieków drenujących. W przypadku występowania wody gruntowej głębszej niż 3–5 m spodziewane po piętrzeniu, obszar badań może być ograniczony. W tym przypadku prostopadle do cieków drenujących należy wykonać 2–3 prze-kroje hydrogeologiczne badawcze, w celu określenia warunków i wielkości ucieczek wody ze zbiornika półzawieszonego.

— Zbiornik zawieszony, w którym zwierciadło wody nie łączy się ze stałym zwierciadłem wody gruntowej występującej kilka do kilkudziesięciu metrów poniżej jego dna. Zbiorniki tego typu występują najczęściej na obszarach o silnie przepuszczalnym podłożu, szczególnie skrassowalnym. Istnieje tu duże prawdopodobieństwo pionowej ucieczki wody oraz trudności w uszczelnieniu podłoża zapory i przyczółków. Badania prognozy dotyczą możliwości piętrzenia zbiornika i mają charakter ogólnych badań geologicznych nad skrasowaniem i szczelinowatością w otoczeniu.

— Zbiornik podniesiony, w którym woda występuje powyżej otaczającego terenu. Zbiornik podniesiony jest ograniczony poza zaporą czołową również zaporami bocznymi. W sąsiedztwie powstają rozległe obszary depresyjne. Ze względu na to, że zbiorniki podniesione są budowane najczęściej na nizinnych odcinkach dolin rzecznych, ich zasięg wpływu jest rozległy, a w systemie kaskadowym obszary wpływu zbiorników tego typu często nakładają się nawzajem. Dla tego typu zbiorników niezbędne są obszernie i długotrwałe badania hydrogeologiczne na całym obszarze wpływów zbiornika. Obejmują całą dolinę i pas 1–2 km na wysoczyźnie i 0,5–2 km poniżej zapory czołowej. Dotyczą one przede wszystkim prognozy działania urządzeń odwadniających na obszarach depresyjnych,

— Zbiornik mieszany, to często zbiornik wodny mający na poszczególnych odcinkach odrębny charakter. Z jednej strony zbiornik może być typu zanurzonego, a przeciwnie brzeg jest typu zawieszonego, jak również część zbiornika może stanowić zapora boczna, chroniąca osiedle lub miasto przed zalaniem.

Podczas szczegółowej wizji terenowej na etapie badań rozpoznawczych dla obiektów stopnia wodnego należy dokonać pomiaru zwierciadła wody gruntowej we wszystkich dostępnych punktach (przede wszystkim będą to studnie gospodarskie) w celu stwierdzenia typu projektowanego zbiornika, a poprzez ogólne rozpoznanie głębokości występowania wody gruntowej i morfologii terenu należy wypowiadać charakterystyczne studnie do stacjonarnych wieloletnich pomiarów w podstawowej sieci pomiarowej. Wyniki pierwszego pomiaru posłużą też do sprecyzowania obszarów przewidywanych badań.
Podczas kartowania kompleksowego należy w pierwszym roku wykonać drugi pomiar we wszystkich punktach. Należy tak zaplanować oba pomiary, aby jeden przypadł na okres w danym roku, w którym występują najniższe stany wód gruntowych, a drugi przy najwyższych stanach wód.

Punkty do stałej obserwacji w podstawowej sieci należy projektować w przekrojach hydrogeologicznych z wierceniami. Pewną liczbę punktów należy zlokalizować między przekrojami na obszarach o charakterystycznej budowie geologicznej, morfologii lub, jeśli to na tym etapie jest już możliwe, w przewidywanych miejscach ważniejszych obiektów odwadniających. Jeden punkt obserwacji w podstawowej sieci dla prognozy orientacyjnej należy planować na 1 do 4 km², w zależności od wielkości zbiornika i skomplikowania warunków wodnych w podłożu.

Pomiary w sieci obserwacyjnej należy wykonać raz w tygodniu. Podczas wezbrani pomiar wody należy wykonywać codziennie. Inna częstotliwość pomiarów jest dopuszczalna po uzgodnieniu z wykonawcą prognozy. Do pomiarów, przynajmniej w kilku punktach węzłowych, zaleca się użycie limnigrafów.

Równolegle z pomiarami wód gruntowych należy wykonać pomiary stanów wód w ciekach na całym obszarze badań. Dla celów prognozy orientacyjnej najczęściej są wystarczające wyniki pomiarów sieci hydrograficznej Instytutu Meteorologii i Gospodarki Wodnej.

Dla opracowania prognozy orientacyjnej konieczne są wyniki z okresu co najmniej 2. lat, a dla prognozy podstawowej co najmniej 5. lat.

Opracowanie wynikowe prognozy orientacyjnej składa się z:
- tekstu,
- mapy dokumentacyjnej, mapy hydroizohips dla stanów ekstremalnych przed piętrzeniem i stanu ustalonego po piętrzeniu wody w zbiorniku, mapy hydroizobat przed i po piętrzeniu,
- przekrojów hydrogeologicznych z naniesionymi stanami wód: ekstremalnego przed piętrzeniem i ustalonego po piętrzeniu,
- wykresów stanów wód w sieci podstawowej.

Badania hydrogeologiczne dla prognozy podstawowej i szczegółowej należy projektować zgodnie z wytycznymi zawartymi w Zasadach... (1972).

2.15. Wały przeciwpowodziowe

2.15.1. Wstęp

Powódź w lipcu 1997 r. była największym kataklizmem zanotowanym w ciągu ostatnich kilkuset lat w Polsce. Straty materialne powstałe w jej wyniku są ogromne i w skali kraju wynoszą kilka miliardów złotych. Znaczna część tych strat jest związana z zalaniem terenów położonych w dolinach na skutek przerywania wałów przeciwpowodziowych przez spiętrzone na międzywału wody wzbrykanych rzek. Wały, które miały chronić tereny przyległe, w wielu miejscach nie spełniły swojej roli. Tylko na terenie województwa wrocławskiego zaobserwowano około 20 miejsc przerwań i rozmyć wałów. Obserwacje wskazują, że część przerwań powstała w wyniku
rozmycia wału przez przelewającą się wodę ponad jego koroną, jednak większość zniszczeń struktury wału należy wiązać z ich konstrukcją i budową geologiczną (wykształceniem litologicznym) podłoża gruntowego.

Można podać, że obecny system wałów w dolinie Odry pochodzi z początku XX w. Po serii katastrofalnych powodzi (m.in. w latach 1897 i 1903) zainicjowano wiele ustaw (m.in. Ustawa Odrzańska z 1905 r.), mających na celu stworzenie planów uregulowania Odry. W ramach tych prac wybudowano większość użytkowanych teraz wałów przeciwpowodziowych. To niewątpliwie wielkie z punktu widzenia inżynierii wodnej przedsięwzięcie nie zawsze było poparte należytą wiedzą z zakresu geotechniki, rozpoznania podłoża gruntowego i procesów filtracji wód pod zaporami. Również po wojnie całkowicie zaniedbano problemy związane z konstrukcją samych wałów, jak np. określenie rodzaju gruntów, z którego są wykonane, ich cech fizycznych i parametrów geotechnicznych oraz przepuszczalności stopy wałów, a także ich podłoża. Analiza map geologicznych obejmujących dolinę Odry w okolicach miejsc przerwań wałów wskazuje, że podłoże wału w tych miejscach było zbudowane z piasków rzecznych przewarstwianych mułkami i lami tarasów zalewowych niższych (2,0–2,5 m nad poziom rzeki).

Utwory te charakteryzują się dużą zmiennością litologiczną cech fizycznych i parametrów filtracyjnych, czyli zmiennymi właściwościami przewodzenia wody. W miejscach większości przerwań na zawalu obserwowano występowanie świeżo naniesionych osad osadów rzecznych, głównie frakcji ziarn i popiółków. Obecność utworów o dobrym przepuszczalności przekopu wałów w miejscach zniszczenia ich ciągłości została potwierdzona badaniami geofizycznymi.

Typową konstrukcję wału przeciwpowodziowego w dolinie rzeki podano na rysunku 11.

2.15.2. Programowanie badań

Geologiczno-inżynierskie rozpoznanie podłoża wałów powodziowych i samych wałów powinny przedzierać badania geofizyczne: elektrooporowe lub radarowe, albo i jedne i drugie.

Do podstawowych badań geologiczno-inżynierskich wałów powodziowych zaliczyć można:
— opis litologiczny profilu (określenie rodzaju gruntu),
— określenie uziarnienia gruntów,
— określenie porowatości i przepuszczalności gruntów w wale i w podłożu,
— określenie stopnia zagęszczenia \(I_D \) gruntów sypkich (sondą lekką SL),
— ocenę gęstości w warunkach naturalnych i gęstość objętościową szkieletu,
— określenie wytrzymałości gruntu na ściganie,
— badanie wilgotności naturalnej,
— badanie granic konsystencji, wskaźnika plastyczności oraz stopnia plastyczności,
— zawartość substancji organicznej.

W analizie wykonywanej w projekcie badań geologicznych, opracowywanej dla renowacji wałów, należy uwzględniać fakt i rozmiary zagrożenia wystąpienia katastrofy.

Projektowanie wałów prowadzi się z uwzględnieniem następujących zasad:

a) nie pozostawiania bez dostatecznego wyjaśnienia jakichkolwiek zagadnień geologicznych mających wpływ na bezpieczeństwo wałów; w szczególności niedopuszczalne jest zaniedbanie (z uwagi na czas lub koszty) przeprowadzenia potrzebnych badań,

b) wybierania z rozwiązań różniących się między sobą stopniem bezpieczeństwa oraz kosztami (do kilkunastu procent) rozwiązań bezpieczniejszych choć droższych.

2.15.2.1. Założenia techniczne budowy wałów

Projekty obwałowań powinny uwzględniać:

— obecny i w miarę możliwości planowany stan naturalny (przyrodniczy), gospodarczy i społeczny chronionych dolin i innych obszarów, których stan i warunki wpływać mogą istotnie na rozwiązanie projektu obwałowania,

— obecne i planowane ustalenia wodno-gospodarcze, gdy mogą one wpływać na zakres i rozwiązania techniczne ochrony przed powodzią objętych projektem obszarów,

— wymagania ochrony środowiska (w tym ochrony krajobrazu), zabytków i dóbr kulturalnych,

— zakres i przewidywaną skuteczność kontroli stanu wałów i koryta wielkich wód, robót konserwacyjnych, naprawczych i przystosowawczych oraz akcji przeciwpowodziowej.

Szerokość korony zapory wysokości ponad 2 m, gdy przewiduje się jej wykorzystanie dla komunikacji, nie powinna być mniejsza niż 4,5 m, w innych przypadkach 3,0 m; w zaporach niższych szerokość tę wolno zmniejszyć. Odwodnienie korony nieprzejezdnej można zapewnić przez nadanie jej spadku poprzecznego 2% w kierunku skarpy odwodnej. Nachylenia skarp powinny wynikać z obliczeń stateczności, z tym że ze względu na utrzymanie stateczności (możliwość koszenia mechanicznego) zaleca się stosowanie nachylenia nie większego niż 1:3. Gdy analiza doświadczeń lokalnych wskazuje na możliwość degradacji (spękania, zbryleń, utraty spójności itp.) warstw powierzchniowych wałów z gruntów spoiwych, zaleca się zwiększenie szerokości ich korpusu co najmniej o 0,50 m z każdej strony.
2.15.2.2. Podłoże i posadowienie wałów

Przy budowie i renowacji wałów przeciwpowodziowych wykorzystuje się:

a) podłoża nośne złożone z gruntów nośnych, do których zalicza się (z wyjątkiem makroporowatych) grunty sypkie oraz spoiste o stopniu plastyczności \(I_L < 0.25 \), tj. w stanie twardo plastycznym, półzwartym i zwartym,

b) podłoża słabonośne złożone z gruntów, do których zalicza się: gliny, ły, muły w stanie plastycznym, miękko plastycznym i płynnym, namyłe organiczne, w tym gyrie, torfy i grunty torfiaste, oraz grunty makroporowane.

Wały mogą być posadowione na każdych gruntach pod warunkiem zastosowania środków zapewniających stateczność budowli i podłoża oraz ograniczenie osiądań i skutków nadmiernej filtracji.

Ponieważ w przypadku posadowienia wału na podłożach słabonośnych lub złożonych z gruntów bardzo przepuszczalnych i sufozjnych, o urozmaiconej budowie powodującej duże różnice osiądań itp., środki zapewniające bezpieczeństwo i prawidłowe działanie wału są kosztowne i wymagają istotnego przedłużenia okresu budowy, jest wskazane:

— takie prowadzenie trasy, by wał był lokalizowany na gruntach nośnych mało przepuszczalnych,

— unikanie przekroczeń starorzeczy, obszarów podmokłych i starych wyrobisk.

Możliwości przełożenia trasy na obszary o korzystniejszym podłożu są zwykle ograniczone wymaganiami hydraulicznymi, odnoszącymi się do warunków przepływu wielkich wód, zatem dokonanie zmian ze względu na podłoże wymaga analizy techniczno-ekonomicznej.

W projekcie obwałowań należy uwzględnić:

— stateczność korpusu i podłoża w okresie budowy i eksploatacji,

— zabezpieczenie przed wystąpieniem w czasie użytkowania osiądań, które mogą spowodować niedopuszczalne obniżenie korony, spękania korpusu wału lub istotne odkształcenia jego przekroju poprzecznego,

— zabezpieczenie przed powstaniem przebić hydraulicznych, sufozji i nadmiernej filtracji w podłożu.

Posadowienie wałów bezpośrednio na gruntach nośnych nie wymaga z reguły stosowania specjalnych zabezpieczeń, z wyjątkiem przypadków gdy pod cienkimi powierzchniowymi warstwami o mniejszej przepuszczalności leżą bardzo przepuszczalne warstwy piaskowe lub żwirowe (zagrożenie przez przebicie hydrauliczne), lub gdy ze względów gospodarczych występuje potrzeba ograniczenia przesiąków na zawale. Posadowienie na gruntach słabonośnych wymaga przeważnie zwiększenia nośności wałów lub stosowania środków ograniczających osiadanie albo tak je przyspieszających, by prawie w całości wystąpiły w czasie budowy.

Do budowy wałów stosuje się materiały występujące najbliżej. Są to:

— grunty niespoiste (piaszczyste, žwirowe i żwirowo-otoczakowe) na korpusy wałów wszystkich klas, przy czym w niektórych przypadkach może wystąpić konieczność odpowiedniego zabezpieczenia gruntu przed skutkami filtracji,

— grunty spoiste (piaski gliniaste, gliny i gliny ciężkie) o wilgotności umożliwiającej prawidłowe wbudowanie i zagęszczenie na uszczelnienia korpusu wału oraz na korpus wału pod warunkiem zastosowania zabezpieczeń skarp przed degradacją (warstw ochronnych),

— grunty pylaste (piaski i pyły na środkową część korpusu) pod warunkiem przeprowadzenia badań wyjaśniających możliwość ich wbudowania i zagęszczenia.
Wały są konstrukcją specyficzną, pracującą krótki czas. Wymaga się 1-miesięcznej trwałości wału w warunkach maksymalnego obciążenia. Dlatego konieczne jest określenie:

— Orientacyjnego czasu, po którym przesiąki sięgają skarpy odpowietrznej, a gdy jest on krótszy niż czas trwania wezbrania, także czasu ustalenia się warunków filtracji.
— Granicy, do której w czasie trwania wezbrania powodzi sięgają wody przesiąkowe w korpusie i podłożu (pole zawilgocenia). Granice te wyznacza się wówczas, gdy orientacyjny czas dojścia wody do skarpy odpowietrznej i czas ustalenia się warunków filtracji są dłuższe niż czas trwania wezbrania.
— Krzywej depresji w korpusie i ciśnienia w podłożu na zawalu pod górną warstwą słabo przepuszczalną (madową) oraz w miarę potrzeby określenie siatki hydrodynamicznej.

Wały projektuje się zazwyczaj z nachyleniem skarp podanym w tabeli 26.

2.15.2.3. Odbudowa wałów

Wymagania odnoszące się do konstrukcji i materiału odbudowywanego po zniszczeniu wału nie różnią się od wymagań stawianych nowym obwałowaniom. Krótkie terminy w jakich musi być zrealizowana odbudowa powodują, że na ogół brak jest czasu na przeprowadzenie potrzebnych badań, opracowanie pełnej dokumentacji oraz przygotowanie optymalnych technologii i organizacji budowy. W takich przypadkach jest wskazane stosowanie bezpieczniejszych lub znacznie bezpieczniejszych rozwiązań wału odbudowywanego w porównaniu do wałów nowych. Nie należy zwłaszcza stosować nowych, nie sprawdzonych technologii i metod.

Szczególne warunki realizacji odbudowy wałów wynikają z faktów:

— W okresie odbudowy istnieje przerwa w wałe, przez którą w przypadku wystąpienia następnego wezbrania wody dostaną się na obszary chronione. Zabezpieczenie przed tym wymaga budowy tymczasowego wału zamykającego przerwę (połączonego z wałem istniejącym).

— Przerwanie wału stwarza nowe warunki topograficzne i geotechniczne istotnie różniące się od występujących dla wałów nowych. W miejscu budowy mamy najczęściej do czynienia z głębokim i rozległym rozmytym dołem. Mogą także pozostać i resztki starego wału i rozmyty dół.

Należy zawsze rozważyć prawidłowe połączenie z częściami dobudowywanymi (usunięcie zanieczyszczeń, części organicznych, gruntu rozłożoną lub płynnego).

<table>
<thead>
<tr>
<th>Rodzaj gruntu w korpusie wału</th>
<th>Nachylenie skarpy</th>
<th>Nachylenie skarpy odpowietrznej</th>
<th>z drenażem</th>
<th>bez drenażu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niespoisty</td>
<td>1:2,5</td>
<td>1:2,0</td>
<td>1:2,25</td>
<td></td>
</tr>
<tr>
<td>Spoisty</td>
<td>1:2,0</td>
<td>1:2,0</td>
<td>1:2,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 26

Nachylenie skarpy w zależności od rodzaju gruntu
Trasę wałów odbudowywanych można prowadzić po trasie istniejącej przed zniszczeniem obwałowania lub po nowej omijającej rozmyte wyrwy, jeżeli nie powoduje to zmniejszenia przekroju przepływu wód wezbraniowych. Rozszerzona część międzywalna powstała przez poprowadzenie wału trasą omijającą wyrwę powinna być zabudowana biologicznie lub w inny sposób ograniczający zaburzenia przepływu wielkich wód.

2.15.3. Wymagania zagęszczenia gruntu w wałe przeciwpowodziowym

Jakość zagęszczonego nasypu określa się w zależności od rodzaju gruntu:
a) w przypadku gruntów spoistych wskaźnikiem zagęszczenia (I_I):

$$I_I = \frac{Q_d}{Q_{ds}}$$

b) w przypadku gruntów niespoistych stopniem zagęszczenia (I_D):

$$I_D = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

gdzie:

- Q_d — gęstość objętościowa szkieletu gruntowego,
- Q_{ds} — maksymalna gęstość objętościowa szkieletu gruntowego,
- e_{max} — wskaźnik porowatości przy najluźniejszym ułożeniu ziarn,
- e_{min} — wskaźnik porowatości przy najgęstejszym ułożeniu ziarn,
- e — wskaźnik porowatości rzeczywistej w nasypie.

Wymagania odnoszące się do tych parametrów są uzależnione od tego, czy wały są nowo budowane czy też przebudowywane, oraz od stosowanej metody wykonawstwa robót. W przypadku budowy nowych wałów metodą suchą stosuje się kryteria podane w tabeli 27.

Przy odbiorze robót 10% wyników kontroli jakości może tych wymagań nie spełniać, jednak wyniki te nie mogą być umiejscowione w jednym przekroju lub na tym samym odcinku badanego wału.

W przypadku budowy nowych obwałowań wykonywanych metodą hydromechaniczną stopni zagęszczenia gruntu w korpusie powinien wynosić:

- dla wałów I i II klasy: $I_D \geq 0,60$ i $I_D \text{ dolne} \geq 0,45$, przy czym 15% wyników może być mniejszych od $I_D \text{ dolne}$, lecz nie mogą być one umiejscowione w jednym przekroju lub na tym samym odcinku badanego wału,

- dla wałów III i IV klasy: $I_D \text{ śr} \geq 0,50$ i $I_D \text{ dolne} \geq 0,35$, z uwagą jak wyżej w odniesieniu do 15% wyników nie spełniających wymagań.

Przy wymiarowaniu obwałowań, które będą wykonywane metodą hydromechaniczną, należy brać pod uwagę podane wymagania co do parametrów zagęszczenia gruntu i w przypadku trudności ich uzyskania rozbudowywać korpus tych obwałowań.

W przypadku przebudowy i odbudowy obwałowań wymagane parametry zagęszczenia gruntu, ze względu na utrudnienia technologiczne związane z koniecznością dobudowy elementów korpusu do istniejącego, można obniżyć do:

- granuty niespoiste (zwir, posępka, piaski grube, średnie i drobne) — $I_D \text{ śr} \geq 0,50$, $I_D \text{ dolne} \geq 0,35$ lub $I_S \text{ śr} \geq 0,92$, $I_S \text{ dolne} \geq 0,90$,
- granuty mało spoiste i spoiste — $I_S \text{ śr} 0,92$, $I_S \text{ dolne} \geq 0,85$.

Dopuszcza się 15% wyników mniejszych niż \(I_D \) dolne i \(I_S \) dolne pod warunkiem, że nie będą one zgrupowane na tym samym odcinku wału. W projekcie i w obliczeniach uwzględniać należy zmniejszenie zagęszczenia.

Odstęp od wymaganych wartości można w przypadku, gdy w projekcie założono uzyskanie innych wielkości wskaźnika zagęszczenia \(I_S \) lub stopnia zagęszczenia \(I_D \).

3. ZASADY SPORZĄDZANIA DOKUMENTACJI GEOLOGICZNO-INŻYNIERSKICH NA POTRZEBY WYKONYWANIA WYROBISK GÓRNICZYCH

Prawo geologiczne i górnicze z 1994 r. wymaga określenia tzw. górniczo-geologicznych warunków eksploatacji złóż. Jednym z elementów są warunki geologiczno-inżynierskie opracowane w formie dokumentacji. W odniesieniu do złóż dokumentacja geologiczno-inżynierska stanowi zazwyczaj część składową tzw. kompleksowej dokumentacji geologicznej złóż, obok części złożeowej, hydrogeologicznej, gazowej i geotermicznej.

Sporządzając dokumentację geologiczno-inżynierską na potrzeby wykonywania wyrobisk górniczych należy brać pod uwagę trzy grupy czynników:

- geologiczno-strukturalne,
- geodynamiczne,
- właściwości fizyczno-mechaniczne skał i gruntów.

Czynniki te w dużej mierze są ze sobą powiązane. Rozpoznanie geologiczno-strukturalne górotworu, głównie rodzajów skał, ich ułożenia i następstwa, obecności tektoniki itp. ma podstawowe znaczenie przy planowaniu rozmieszczenia wyrobisk górniczych i ich geometrii. Pośrednio służy też do oceny możliwych zagrożeń geodynamicznych dla wyrobisk i utrudnień eksploatacji (np. ze strony uskoków) oraz wyjaśnienia niektórych prawidłowości zmian charakterystyk fizyczno-mechanicznych skał.

<table>
<thead>
<tr>
<th>Rodzaj gruntu</th>
<th>Zawartość frakcji > 2 mm (%)</th>
<th>Klasa wałów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I, II</td>
</tr>
<tr>
<td>Grunty spoiste</td>
<td>0–10</td>
<td>(I \geq 0,95)</td>
</tr>
<tr>
<td></td>
<td>10–50</td>
<td>(I \geq 0,92)</td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td>(I \geq 0,90)</td>
</tr>
<tr>
<td>Grunty niespoiste</td>
<td>piaski drobne i średnie</td>
<td>(I \geq 0,70)</td>
</tr>
<tr>
<td></td>
<td>piaski grube i grunty gruboziarniste</td>
<td>(I \geq 0,65)</td>
</tr>
</tbody>
</table>

Tabela 27

Klasa wałów w zależności od rodzaju gruntu
Do grupy czynników geodynamicznych, jako pochodnej warunków naturalnych i techniczno-eksploatacyjnych, należy charakterystyka pól fizycznych w górotworze (pole naprężeń, temperatury, deformacji, pole hydrodynamiczne itp.). Znajomość zasiegu oddziaływania tych pól oraz wartość charakteryzujących je parametrów jest niezbędna przy rozwiązywaniu praktycznych problemów w zakresie zagrożeń dla ruchu kopalni i bezpieczeństwa załogi oraz np.: określenia wymiarów i kształtu wyrobisk, doboru rodzaju ich obudowy, prognozy ciśnienia górniczego i zjawisk tąpan, warunków sterowania ciśnieniem, odwodnienia górotworu itp.

Rozpoznanie fizyczno-mechanicznych właściwości skał pozwala głównie na ocenę stateczności wyrobisk i urabialności skał oraz prognozę występowania niektórych zjawisk geodynamicznych (np. wyciskanie spągu wyrobisk, tąpan, wyrzutów skał, obwałów stropu itp.). Zakres i szczegółowość rozpoznania tych trzech grup czynników zależy z jednej strony od rodzaju złoża i skał towarzyszących oraz stopnia złożoności warunków geologicznych, a z drugiej od potrzeb górniczo-technologicznych, głównie sposobu przewidywanej czy prowadzonej eksploatacji złoża (eksploatacja podziemna, odkrywkowa, otworowa), sposobu wykonywania wyrobisk, rodzaju maszyn urabiających itp. W przypadku złoź surowców mineralnych zakres i szczegółowość badań geologiczno-inżynierskich zależy też od kategorii ich rozpoznania i udokumentowania (kat. C₂, C₁, B i A). Problem kategorii rozpoznania złoża nie dotyczy przypadków podziemnych wyrobisk górniczych wykonywanych dla innych celów niż eksploatacja złoża (np. sztolnie badawcze i hydrotechniczne w budownictwie wodnym, tunele komunikacyjne itp.). Jednak i tutaj badania warunków geologiczno-inżynierskich prowadzi się na ogół etapami (badania wstępne głównie na podstawie danych z powierzchniowych otworów wiertniczych, badania szczegółowe w samych wyrobiskach w trakcie ich wykonywania i po wykonaniu), co można przyrównywać do kategorii rozpoznawania i udokumentowania złoża. Etapowość badań geologicznych, a w tym geologiczno-inżynierskich, nie jest obecnie w polskim prawodawstwie jasno określona, lecz można tu wyróżnić jej dwa nurty. W odniesieniu do badań dla złoź surowców mineralnych, gdzie obowiązuje system uzyskiwania koncesji na eksploatację, etapy badań można wiązać z procesem koncesyjnym i obejmują one opracowywanie:
- założeń do projektu zagospodarowania złoża (kat. C₂ lub niższe),
- projektu zagospodarowania złoża (kat. C₁),
- planów ruchu zakładu górniczego (kat. B i A) po uzyskaniu koncesji.

Etapy badań zarówno w odniesieniu do wyrobisk górniczych związanych z eksploatacją złoża, jak i nie związanych z tą eksploatacją, można też wiązać z etapami procesu inwestycyjnego. W procesie tym stosuje się etapy:
- biznes plan,
- założenia techniczno-ekonomiczne (ZTE),
- projekty techniczne (PT).

Nie istnieje prosta odpowiedniość etapowości badań geologicznych związanych z procesem koncesyjnym i inwestycyjnym. W tej sytuacji można ogólnie przyjąć, że w badaniach geologiczno-inżynierskich dla celów sporządzania dokumentacji geologiczno-inżynierskiej wyrobisk górniczych wyróżnia się:
- etap badań wstępnych, który odpowiadałby potrzebom opracowywania założeń do projektu zagospodarowania złoża lub biznes planu,
- etap badań podstawowych, który odpowiadałby potrzebom opracowywania projektu zagospodarowania złoża (PZZ) lub założeń techniczno-ekonomicznych (ZTE),
- etap badań szczegółowych (zupełniających) na potrzeby opracowywania planów ruchu zakładu górniczego lub projektów technicznych (PT).
W praktyce w naszym kraju wyrobiska górnicze wykonuje się przede wszystkim na potrzeby eksploatacji surowców mineralnych, w tym głównie węgla kamiennego i brunatnego oraz miedzi. Dlatego też zakres i rodzaje badań przy sporządzaniu dokumentacji geologiczno-inżynierskiej dla celów wykonywania takich wyrobisk, można uzależnić w dużej mierze od sposobów eksploatacji złoża (górniczo odkrywkowe, podziemne, otworowe surowców stałych) i w nawiązaniu do ich potrzeb. Rodzaje, a zwłaszcza zakresy badań nawiązuje się też do rodzajów złoża i kategorii ich rozpoznania oraz stopnia złożoności budowy geologicznej (grup złoża), a także wielkości i głębokości występowania złoża (Wytyczne..., 1992). Według wytycznych wyróżnia się trzy grupy złoża:

- Grupa I — złoża lub ich części o prostej, łatwej do interpretacji budowie geologicznej, ciągłe lub w niewielkim stopniu zaburzone tektonicznie.

- Grupa II — złoża lub ich części o zróżnicowanej trudnej do interpretacji budowie geologicznej, tektonicznie zaburzone, lokalnie nieciągłe.

- Grupa III — złoża lub ich części o bardzo trudnej do interpretacji zróżnicowanej budowie geologicznej, silnie tektonicznie zaburzone, zmiennej miąższości.

Wytyczne... (1992) precyzują też, że wyjaśnienie warunków inżyniersko-geologicznych w ramach oceny geologiczno-górniczych warunków wydobycia kopalin powinno zawierać:

a. Wydzielenie w profilu warstw o różnych właściwościach fizyczno-mechanicznych (inżyniersko-geologicznych) oraz określenie głębokości ich występowania, miąższości, rozprzestrzenienia i korelacji poszczególnych wydzielen (litotypów).

b. Ocenę osłabienia strukturalnego górotworu, ze wskazaniem miejsc i stref szczególnie osłabionych na podstawie systematycznych obserwacji i pomiarów podzielności warstwowej, spęków bądź innych zaburzeń tektonicznych.

c. Określenie właściwości fizyczno-mechanicznych wydzielenych litotypów w nawiązaniu do budowy geologicznej i warunków hydrogeologicznych dokumentowanego obszaru, w zakresie niezbędnym dla: oceny warunków stropowych, spągowych i skłonności do tąpania w przypadku eksploatacji podziemnej, stateczności skarp przy eksploatacji odkrywkowej, urabialności kopaliń i skał otaczających wraz z podaniem dokładności oznaczania tych właściwości.

d. Wyjaśnienie możliwości występowania zjawisk i utworów utrudniających prowadzenie robót górniczych i skal trudności, jak np. skał o charakterze kurzawkowym, słabych, wtórnie zmienionych, skrasowiałych, zwietrzałych, spękanych, zaburzonych tektonicznie, określenie ich rozprzestrzenienia i zagrożeń z tym związanych.

e. Informacje o występowaniu lub ocenie możliwości występowania zjawisk geodynamicznych na obszarze przewidywanej eksploatacji (osuwiska, sufozje itp.).

f. Prognozę zmian właściwości skał w czasie udostępniania i eksploatacji złoża pod wpływem zawodnienia lub osuszenia, po zamrożeniu i odmrożeniu itp.

g. Dane niezbędne przy ocenie zagrożeń naturalnych, związanych z właściwościami inżyniersko-geologicznymi górotworu oraz przy rejonizacji tych zagrożeń.

h. Dane umożliwiające ocenę wpływu eksploatacji na powierzchnię (osiadań, wstrząsów) i związanych z tym zagrożeń dla obiektów podlegających ochronie oraz ocenę możliwości lokalizacji projektowanego zakładu górniczego i obiektów towarzyszących z punktu widzenia warunków geologiczno-górniczych.

i. Określenie parametrów geotechnicznych umożliwiających obliczenie dopuszczalnych obciążeń podłoża w celu zabezpieczenia warunków budownictwa i pracy sprzętu w kopalniach podziemnych i odkrywkowych.
j. Obliczenie objętości nadkłada w przypadku przewidywanej eksploatacji odkrywkowej od-
dzielnie dla grup utworów wymagających odrębnego składania, utylizacji lub rekultywacji.

Wymienione problemy uwzględniają trzy grupy czynników, jakie powinno się uwzględniać przy dokumentowaniu geologiczno-inżynierskim dla celów wykonawstwa wyrobisk górniczych i powinny stanowić podstawę do bardziej szczegółowego opracowania w dokumentacjach geo-
logiczno-inżynierskich dla poszczególnych rodzajów górnictwa.

3.1. Górnictwo odkrywkowe

Badania geologiczno-inżynierskie stanowią ciągły proces badawczy, zaczynający się już przy wstępnych pracach rozpoznawczych i trwający nawet w okresie rekultywacji.

W działalności geologiczno-inżynierskiej na potrzeby kopalni odkrywkowej muszą być ujawnione problemy, które wystąpią w trakcie budowy kopalni, przedstawione warunki zapew-
niające bezpieczną eksploatację i określony wpływ eksploatacji na przyległe tereny. Rozwiązy-
wane powinny być one stopniowo, co wiąże się z koniecznością opracowywania kolejnych
prognoz na podstawie konstruowanych modeli. Przed rozpoczęciem badań w kategorii C₂ nie
dysponuje się materiałami, które pozwoliłyby na stworzenie modelu. Badania złożowe w kate-
gorii C₁ powinny doprowadzić do modelu rekonstruującego środowisko. Wyniki badań dla od-
krywki i zwalowiska w kategorii C₁ pozwalają na zbudowanie wstępnego modelu
prognozującego, jako podstawy wyboru najbardziej korzystnych rozwiązań projektowych w za-
kresie lokalizacji wkpów otwierającego i zwalowiska zewnętrznego, obiektów zapleca technicznego, zaleceń dotyczących technologii i geometrii odkrywki oraz zwalowiska. Uszczegółowienie modelu prognozującego następuje w fazie rozpoznania w kategorii B. Przed-
stawienie modeli prognozujących dla odkrywki i dla rejonów objętych wpływem odkrywki nie
może stanowić zakończenia prac progностycznych. Obserwacje i dokumentowanie warunków
i procesów geologiczno-inżynierskich w trakcie prowadzenia robót górniczych służą jako pod-
stawa do sporządzania aktualizowanych modeli prognozujących. Założony okres istnienia skarp
roboczych i stałych, dojazdów, rozpoczęcie i postęp zwalowania wewnętrznego, przy koniecz-
ności stosowania minimalnych wartości współczynników bezpieczeństwa, zmusza do stałej ko-
rekty modelu prognozującego z kolejnym przybliżeniem do występujących warstw — modelu
rzeczywistego (Z. Glazer i in., 1982).

3.1.1. Zależność badań od etapu projektowania

W geologiczno-inżynierskiej problematyce górnictwa odkrywkowego najistotniejszym za-
gadnieniem jest stateczność skarp oraz warunki hydrogeologiczne. Kąty statecznego nachyle-
nia skarp mają ogromny wpływ na ekonomiczność eksploatacji. Kolejne ważne problemy stanowią:
stateczność zwalowiska, osiadanie terenu wskutek odwodnienia, posadowienie
obiektów towarzyszących, warunki rekultywacji itp. Rozwiązanie zadania geologicznego
musi zmierzać do ustalenia odpowiedniego modelu obliczeniowego i dla wydzielonych
warstw geologiczno-inżynierskich parametrów niezbędnych do przeprowadzenia odpowied-
nich analiz warunków stateczności.
Udokumentowany model warunków geologiczno-inżynierskich i hydrogeologicznych wymaga wykonania odpowiednich robót geologicznych. Otwory wiertnicze i wyrobiska górnicze, wydzielane jako specjalne geologiczno-inżynierskie i hydrogeologiczne, powinny stanowić 10–25% liczby wszystkich otworów wiertniczych i wyrobisk dokumentujących złoże w danej kategorii. Dla bardziej skomplikowanych warunków geologiczno-inżynierskich i dla wyższych kategorii dokumentowania złoża procent podstawowych punktów dokumentacyjnych złoża, stanowiących specjalne, geologiczno-inżynierskie i hydrogeologiczne otwory wiertnicze i wyrobiska, powinien być większy.

3.1.1.1. Zakres badań geologiczno-inżynierskich w kategorii C₂

Określenie warunków geologiczno-inżynierskich w tej kategorii ustala się na podstawie:
— wykorzystania dostępnych materiałów archiwalnych (różni rodzajowi dokumentacji, opracowań, literatury),
— interpretacji zdjęć lotniczych i satelitarnych,
— prac terenowych,
— badań laboratoryjnych.

Prace terenowe obejmują przede wszystkim:
— wykonanie wiercen i robót ziemnych,
— profilowanie wszystkich otworów wiertniczych oraz wyrobisk znajdujących się na obszarze złoża,
— pobranie odpowiednich próbek gruntów.

Otwory wiertnicze powinny być zlokalizowane w miejscach umożliwiających rozpoznanie pełnego, typowego profilu dla danego złoża. Opróbowaniem należy objąć około 10% ogólnej liczby otworów. Częstotliwość opróbowania wynika ze zmienności litologicznej i według PN/G-05101-projekt wynosi dla ilów co 1 m, glin i pyłów co 2 m i piasków co 3 m. Próbki powinny zapewniać naturalny skład granulometryczny i naturalną wilgotność.

W badaniach laboratoryjnych przewiduje się wykonanie podstawowych oznaczeń identyfikacyjnych obejmujących: skład granulometryczny, gęstość objętościowa i wilgotność naturalną. Nie przewiduje się wykonania badań wytrzymałościowych i odkształceniowych, natomiast istnieje potrzeba wykonania badań mineralogicznych (metodą TAR) głównych typów gruntów w poszczególnych seriiach litologicznych w nadkładzie i w spągu złoża.

Dokumentacja w kategorii C₂ powinna umożliwić ustalenie odpowiedniego modelu budowy geologicznej, warunków wodnych, wstępnie ocenić podstawowe właściwości fizyczne występujących gruntów, określić wystąpienie możliwych procesów geodynamicznych, ocenić z punktu ekonomicznego celowość budowy odkrywki z uwagi na warunki geologiczno-inżynierskie. Badania w kategorii C₂ powinny doprowadzić do stworzenia modelu rekonstruującego środowisko.

W skład dokumentacji w kategorii C₂ wchodzą:
— mapy: dokumentacyjna i geologiczna (szkic geologiczno-inżynierski) w skalach 1:10 000 – 1: 50 000,
— przekroje geologiczne, tabele i wykresy wyników.
3.1.1.2. Zakres badań geologiczno-inżynierskich w kategorii C₁

Największy zakres badań geologiczno-inżynierskich jest związany z dokumentowaniem dla kategorii C₁. Wyniki tych badań w górnictwie odkrywkowym (dla wkopu i zawaliska) powinni pozwolić na zbudowanie (wstępnego) modelu prognozującego, a więc konieczne jest ustalenie wartości liczbowych, charakteryzujących właściwości fizyczne i wytrzymałościowe wydzielonych serii. Największy nacisk musi być położony na duży zakres badań polowych i laboratoryjnych (typowych i specjalnych), przeprowadzanych w rejonie wkopu otwierającego, ponieważ uzyskane dane przy zachowaniu dopuszczalnego ryzyka geologicznego pozwolą na zaprojektowanie odpowiednich prac górniczych.

Badania geologiczno-inżynierskie w kategorii C₁ muszą uwzględniać uzyskane rezultaty z kategorii C₂. Według PN/G-05101-projekt badania w kategorii C₁ powinny umożliwić ustalenie prognozy (wstępnej) geologiczno-inżynierskich warunków złoża, zawierającej:
- wstępne określenie wysokości pięter górniczych, szerokości półek, poziomów, dopuszczalnego nachylenia skarp i zboczów całego projektowanego wyrobiska,
- ocenę prawdopodobieństwa lokalizacji wkopu otwierającego,
- ocenę kierunku eksploatacji,
- ustalenie miejsca pod zawalisko zewnętrznne i określenie odległości zawaliska od wyrobiska,
- wstępną ocenę warunków pracy maszyn urabiających i urządzeń transportowych na poziomach eksploatacyjnych, w nawiązaniu do określonych badaniami cech fizycznych i mechanicznych gruntów.

Aby przeprowadzić ocenę geologiczno-inżynierską warunków złoża jest konieczne:
- <M%-1> szczegółowe określenie budowy geologicznej (litologii i tektoniki) nadkłada i spągu złoża,
- ustalenie przebiegu stref tektonicznie zaburzonych (ciągłych i nieciągłych), występujących w strefie między stałą skarpą a występującymi na powierzchni zbiornikami lub ciekami powierzchniowymi,
- określone warunki hydrogeologiczne, w szczególności w strefie między stałymi skarpami a występującymi na powierzchni zbiornikami lub ciekami powierzchniowymi,
- określone warstwy geotechniczne i ustalenie charakterystycznych parametrów fizyczno-mechanicznych,
- określenie w pasie 3-kilometrowym wokół złoża miejsc występowania na powierzchni terenu gruntów słabonośnych (np. torfów, mad, gytii itp.), sposobu i głębokości ich występowania,
- ustalenie wstępnej prognozy wpływu kopalni na środowisko.

W celu rozpoznania podłoża i ustalenia wymienionych warunków przeprowadza się prace terenowe, badania laboratoryjne i kameralne.

W pracach terenowych należy wykonać:
- zdjęcie geologiczno-inżynierskie w skali 1:10 000 (lub 1:25 000),
- lokalizację form i zjawisk geodynamicznych (mapa),
- kompleksową obserwację wód gruntowych,
- badania geofizyczne (ewentualnie przewidzieć),
- roboty geologiczne.

Wiercenia dla celów geologiczno-inżynierskich powinny umożliwiać pobranie odpowiednich próbek do badania właściwości fizyczno-mechanicznych i składu chemicznego. Głębokość otworów wiertniczych ustala się w zależności od: głębokości występowania spągu złoża, sposo-
bu ułożenia gruntów i rodzaju gruntów występujących poniżej spągu złoża. Według wskazówek Poltegoru głębokość otworów wierniczych można określić:

— Przy poziomym ułożeniu gruntów głębokość otworów powinna o 10–15% przewyższać głębokość położenia spągu pokładu kopaliny, z wyjątkiem przypadku gdy w spągu leżą grunty (skaly) znacznie twardejsze od nadkładu. W tym przypadku po nawierceniu skał podłoża i ustawieniu grubości zwietrzeliny mierzenie można przerwać.

— Kiedy podłoże skarpy jest piaszczyste, jednorodne, głębokość powinna być większa o około 5% od głębokości występowania spągu kopaliny.

— Przy nachylaniu skał powinny przebiwać warstwy spągowo w granicach zasięgu możliwego osuwiska, określonego powierzchniami nieciągłości tektonicznych lub sedymencytarnych.

Dla celów geologiczno-inżynierskich wiercenia powinny zapewniać uzysk 90% rdzenia, a średnica rdzenia powinna być równa lub większa od 100 mm.

Opróbowania należy dokonywać uwzględniając wyniki z rozpoznania kategorii C2 rozpatrując zmienność w obrębie poszczególnych serii według zasad (PN/G-0501-projekt):

— jeżeli seria litologiczno-stratygraficzna jest zmienna po rozciągłości i po miąższości, to wówczas wystarczy dokładnie opróbować jedno wyrobisko,

— jeżeli seria litologiczno-stratygraficzna jest niezmienna po rozciągłości, a zmienna po miąższości, to wówczas główną uwagę należy zwrócić na opróbowanie wyrobisk w kierunku pionowym,

— jeżeli seria litologiczno-stratygraficzna jest niezmienna po miąższości, a zmienna po rozciągłości, to wówczas główną uwagę należy zwrócić na opróbowanie wyrobisk w kierunku poziomym,

— jeżeli seria litologiczno-stratygraficzna zmienia się tak po rozciągłości, jak i po miąższości, to należy wtedy opróbować dużą liczbę wyrobisk (otworów wierniczych) według siatki.

W kategorii C1, jeśli nie ma innych przesłanek, należy dążyć do tego, aby pobierać próbki losowo, prawie równomiernie, tak aby reprezentowały one przeciętny skład poszczególnych serii litologiczno-stratygraficznych. Próbki o nienaruszonej strukturze są pobierane:

— za pomocą cylindrów (najlepiej cienkościennych) lub aparatu Kersta,

— w postaci monolitów (rdzeni wiertniczych).

Do badań pobiera się z każdej serii litologiczno-stratygraficznej 2–3-krotnie więcej próbek w stosunku do liczby wykonywanych oznaczeń. Dostarczone do laboratorium próbki powinny być poddane selekcji. Należy wyeliminować próbki sztucznie uszkodzone, złe zabezpieczone, przeterminowane (powyżej 1. tygodnia), pobranie z warstw o małym rozprzestrzenieniu. Ostatnia liczba próbek poddanych badaniom powinna według PN/G-5101-projekt wynosić 36–50 dla każdej serii litologiczno-stratygraficznej, a w przypadku dużej niejednorodności nawet powyżej 50, ale nie powinna przekraczać 100. W pracach terenowych należy przeprowadzić obserwację zachowania się istniejących skarp i zboczy, a w szczególności wpływu wody na warunki ich równowagi.

W badaniach polowych opisem makroskopowym i litologicznym należy objąć próbki ze wszystkich otworów geologiczno-inżynierskich, hydrogeologicznych i złóżowych. Najlepiej dokonać tego według jednolitego schematu.

Warunki geologiczno-inżynierskie złoża eksploatowanego odkrywkowo należy rozpoznać poza granicą zasobów bilansowych w odległości określonej jako funkcja: głębokości odkrywki, kąta nachylania zbocza i szerokości bryły potencjalnego osuwiska. Ta ostatnia wielkość zmienia się w przedziałach 0,1–0,4 H, w zależności od nachylania skał w stosunku do nachylenia zbocza.
Badania laboratoryjne pozwalają wyznaczyć parametry gruntów dla celów wymiarowania obiektów górnictwa odkrywkowego w kategorii C₁. W tej kategorii dla odkrywki wykonuje się na pobranych próbkach gruntów badania:

— podstawowych właściwości fizycznych (skład granulometryczny, gęstość objętościowa, wilgotność, konsystencję),
— wytrzymałości na ściananie.

W badaniach wytrzymałościowych należy bardzo wyraźnie zaznaczyć wszelkie obserwowane defekty (pęknięcia, przewarstwienia itp.), najlepiej wykonując odpowiedni rysunek przed i po badaniu. W badaniach wytrzymałościowych dąży się do odwzorowania (symulowania) w laboratorium rzeczywistych warunków pracy gruntu w masywie. Dotyczy to zarówno sposobu, jak i wartości przykładowych obciążen. W kategorii C₁ przewiduje się wykonywanie badań wytrzymałościowych w aparacie:

— bezpośredniego ściskania (skrzynkowym),
— trójosiowego ściskania, bez konsolidacji i bez odpływu (UU), tzw. badania szybkie.

Dokładniejsza metodyka tych badań jest przedstawiona w normach BN-82/0403-02 i PN-88/B-04481 oraz przez E. Myślińską (1992). W wyniku tych badań otrzymuje się, przy przyjęciu hipotezy wytrzymałościowej Coulomba–Mohra, wartości kąta tarcia wewnętrznej φᵢ₀, spójności cᵢ₀ i wytrzymałości standardowej τᵢ₀.

Norma BN-82/0403-02 określa wytrzymałość standardową (τᵢ₀) jako wartość oporu na ściganie, jaki zostaje zrealizowany w elemencie gruntowym w czasie badań laboratoryjnych metodą szybką, wytrzymałość trwałą (τᵢ) jako wartość oporu na ściganie, jaki może być zrealizowany trwale w elemencie gruntowym przy nieograniczonym czasie trwania obciążenia, wytrzymałość natychmiastową (τᵢₙₐ) jako bezwzględnie największą wartość oporu na ściganie występującą w elemencie gruntowym przy obciążeniu krótkotrwałym (w czasie bliskim zeru), a wytrzymałość resztkową (ustaloną) (τᵢₚ) jako wartość oporu ścigania, jaki występuje w elemencie gruntowym po wytworzeniu się w nim powierzchni poślizgu.

Norma BN-82/0403-02 na podstawie przeprowadzonych badań w kategorii C₁ pozwala na oszacowanie dla celów projektowych:

— wytrzymałości gruntu spoistego na ściganie w zwałosisku τᵢ₀ = 0,55τᵢ₀,
— wytrzymałości trwałe gruntu spoistego na ściganie τᵢ₀ = 0,55τᵢ₀,
— wytrzymałości gruntu sypkiego na ściganie w zwałosisku τᵢ₀ = 0,80τᵢ₀,
— wytrzymałości trwałe gruntu sypkiego na ściganie τᵢ₀ = 0,9τᵢ₀ oraz na oszacowanie według odpowiednich wzorów oporu na ściganie na stykach różnych warstw litologicznych.

W badaniach laboratoryjnych próbek gruntu pobranych z rejonu przyszłej lokalizacji zwałosiska zewnętrznego i w przypadku masywu gruntowego, w którym wystąpi znaczne obniżenie zwierciadła wody, należy przeprowadzić oznaczenie parametrów charakteryzujących odkształcność gruntu. Na tym etapie powinna być wstępnie określona wytrzymałość na ściganie, moduły ściśliwości i współczynniki konsolidacji dla gruntów wydzielonych serii. Metodyka takich badań zawarta jest w normie PN-88/B-04481, Wytycznych... (1989a, b) i w pracy K. H. Heada (1992).
W pracach kameralnych, jako uzupełnienie prac kartograficznych, wykonuje się analizę zdjęć radarowych i satelitarnych. W wyniku takich analiz można ustalić przebieg elementów względnej tektoniki.

3.1.1.3. Wstępna prognoza wpływu kopalni na środowisko

Zgodnie z istniejącym i obowiązującym prawem geologiczno-górniczym istnieje obowiązek wykonywania ocen oddziaływania na środowisko (OOŚ) planowanej inwestycji. Przy eksploatacji kopalni OOŚ podlegają również takim samym regulacjom prawnym. Górnictwo odkrywkowe oddziaływuje na wiele elementów środowiska. Wpływ eksploatacji kopalni jest zależny od rodzaju kopaliny, formy występowania i budowy złoża, wielkości złoża, sposobu urabiania, etapów użytkowania. Podstawowym celem OOŚ jest ustalenie granic wpływu na środowisko eksploatacji kopaliny oraz określenie kierunków przeciwdziałania i minimalizacji szkód wynikających z realizowanej eksploatacji.

Podstawę do opracowania OOŚ stanowią:
— materiały dotyczące kopalni, w szczególności dokumentacje geologiczno-surowcowe, hydrogeologiczne i geologiczno-inżynierskie, projekty zagospodarowania złoża itp.,
— materiały dotyczące środowiska, a w szczególności opracowania fizjograficzne, plany zagospodarowania przestrzennego, raporty o stanie środowiska,
— wizja terenowa, wywiady środowiskowe,
— literatura przedmiotu

Charakterystyka zakładu górniczego obejmuje:
— warunki geologiczno-górnicze złoża,
— sposób eksploatacji,
— obszar po eksploatacji, rekultywację i zagospodarowanie,
— charakterystykę środowiska w otoczeniu złoża.

W charakterystyce środowiska przedstawionej w OOŚ dla kopalń odkrywkowych należy uwzględnić: budowę geologiczną i warunki hydrogeologiczne, geomorfologię, rzeźbę terenu i hydrografię, klimat i stan powietrza atmosferycznego, gleby, flory, obszary i obiekty chronione, zagospodarowanie przestrzenne, człowieka.

Oddziaływanie odkrywkowej eksploatacji kopalni należy rozpatrywać w 2. strefach: strefie oddziaływania bezpośredniego i strefie oddziaływań pośrednich.

Strefa oddziaływań bezpośrednich i intensywnych zaburzeń funkcjonalnych obejmuje wyrobiska i zwałoiska, tereny pomocnicze i pasy ochronne wód oraz zasięg leja depresji i ewentualnych odkałdeń powierzchni terenu związanych z odwadnianiem wyrobiska, skażenia wód, rozrzutu odlamków skalnych, skoncentrowanego zanieczyszczenia powietrza.

Strefa oddziaływań pośrednich obejmuje wpływy pasmowe oraz rozproszone i dotyczy wykorzystania i rozbudowy infrastruktury (dróg, linii zasilających, kanałów i innych), wraz ze spowodowanymi wzdłuż nich zanieczyszczeniami środowiska.

W strefie oddziaływania bezpośredniego główną rolę odgrywają: wielkość złoża, warunki wodne, rodzaj kopaliny i sposób jej urabiania. Granice strefy bezpośredniego oddziaływania wyznacza się za pomocą granicznego oddziaływania na jeden lub dwa elementy środowiska.

Rozporządzenie MOSiZN z dnia 14.07.1998 r. wprowadza klasyfikację zagrożenia jako kryterium przekształcenia powierzchni. Kopalnie odkrywkowe o powierzchni ponad 10 ha zakwalifikowano jako inwestycje szczególnie szkodliwe dla środowiska i zdrowia ludzi, natomiast
o powierzchni poniżej 10 ha jako inwestycje mogące pogorszyć stan środowiska. Przekształcenie powierzchni likwiduje gleby i florę, wpływa na faunę.

Dla złóż zawodnionych rozpatruje się trzy przypadki współzależności eksploatacji z warunkami wodnymi, które mogą wpływać na powstanie i zasięg strefy bezpośredniego oddziaływania: eksploatację złóż zawodnionego bez odwadniania, eksploatację złóż z grawitacyjnym odwadnieniem i eksploatację z odwadnieniem przez odpompowywanie.

Granicę strefy bezpośredniego oddziaływania eksploatacji przy stosowaniu materiałów wybuchowych wyznacza zasięg rozrzutu odłamków skalnych lub zasięg fali sejsmicznej spowodowanej strzelaniem. Brak jest jednoznaczności w stosowaniu tego kryterium.

Proponuje się, aby OOŚ zawierała:
— rodzaj kopaliny, wielkość obszaru złóża, granicę eksploatacji,
— kryteria przyjęte do określenia granicy strefy oddziaływania bezpośredniego,
— określenie obszaru bezpośredniego oddziaływania (z podaniem powierzchni) jako propozycji terenu górniczego,
— ustalenie strefy oddziaływania pośredniego,
— ocenę przewidywanych działań naprawczych,
— ocenę zakresu prowadzonego monitoringu,
— warunki do spełnienia przez zakład górniczy w zakresie ochrony środowiska w okresie ważności koncesji.

OOŚ składa się z tekstu oraz załączników tekstowych i graficznych. Załączniki tekstowe dotyczą decyzji zatwierdzających: zasoby geologiczne i przemysłowe, obszar górniczy, zezwolenia na korzystanie ze środowiska, wyniki badań, uzgodnień. Załączniki graficzne obejmują lokalizację terenu badań, przekrój geologiczno-górniczy z uwzględnieniem granic eksploatacji, plan zagospodarowania przestrzennego z uwzględnieniem funkcji terenu otaczającego zakład górniczy, mapę zasięgu wpływów eksploatacji na środowisko.

3.1.1.4. Zakres badań geologiczno-inżynierskich w kategorii B

Badania geologiczno-inżynierskie w kategorii B należy wykonywać w ściśłym nawiązaniu do projektu eksploatacji złóża. Zakres badań w kategorii B powinien umożliwiać ustalenie szczegółowej prognozy geologiczno-inżynierskiej warunków złóża dotyczącej: konkretnej lokalizacji wkopu otwierającego i zwałówiska, szczegółowego określenia wysokości, szerokości i kąta nachylenia poziomów górniczych w odkrywce i na zwałówisku, oceny warunków pracy urządzeń urabiających i transportowych.

W tym bardziej szczegółowym w stosunku do kategorii C1 etapie badań główna uwaga powinna być zwrócona na rozpoznanie wkopu udostępniającego i rejonu zwałówiska. Uszczegółowia i uzupełnia się wszystkie punkty geologiczno-inżynierskiej oceny warunków złóża wymienione w kategorii C1. W tym celu wykonuje się prace terenowe, laboratoryjne i kameralne.

W pracach terenowych należy wykonać:

a) szczegółowe zdjęcie geologiczno-inżynierskie w skali 1:5000 na obszarze przewidzianym pod zwałówisko zewnętrzne w przypadku występowania gruntów słabonośnych,

b) uzupełniające obserwacje hydrogeologiczne i czynnych zjawisk geodynamicznych,

c) roboty geologiczne.
Wiercenia przeprowadza się w zależności od złożoności warunków geologicznych: grupa złoża, rodzaj kopaliny w rozstawie odpowiednim dla kategorii B. Otwory wiertnicze powinny być lokalizowane wzdłuż linii prostopadłych do rozciągłości warstw w przypadku warstw nachylonych albo w kierunku największego nachylenia terenu lub większych powierzchni nieciągłości przy płaskim ułożeniu warstw (PN/G-05101-projekt). Należy przewidzieć również po 2–3 otwory na każdej linii, tak aby mieściły się w zasięgu bryły możliwego osuwiska skarp stałych w projektowanej odkrywce. Siatkę wiercen należy zagaścić w strefie skarp stałych w regionach, w których stwierdzono występowanie: powierzchni osłabienia, nieciągłości (w szczególności w przypadku konsekwentnie nachylonych z projektowanymi skarpami stałymi), erozyjnych rynien, gruntów słabych (np. iłów warwowych, torfów, gytii itp.), do odległości wymaganej przy III grupie złoż. Ponadto stosuje się rozstaw wiercen III grupy złoż w przypadku projektowania eksploatacji systemem wachlarzowym w strefie nadkładu, gdzie jest zlokalizowany punkt obrotu. Liczba wiercen pod zwałowisko wynika z ustalonej pracami kartograficznymi zmienności litologicznej. Gębokość wiercen nie powinna przekraczać połowy projektowanej wysokości zwałowiska. W przypadku występowania gruntów słabych należy ustalić ich ilość, miąższość i granice występowania.

Opróbowaniem obejmuje się całe zbocze, w szczególności rejony – strefy o zróżnicowanych warunkach. Częstotliwość pobierania próbek z poszczególnych, wydzielonych w kategorii C1 warstw geotechnicznych wynika ze stwierdzonych zmienności parametrów fizyczno-mechanicznych. Liczbę pobieranych próbek należy zwiększyć w dolnych warstwach, w szczególności w uwarstwionych grunach. PN/G-05101-projekt przewiduje dla każdego zespołu warstw geotechnicznych2 (pakietu) wykonanie 36–50 badań, a dla bardziej zróżnicowanych około 100.

Pozostań wskazane jest pobieranie próbek zdkładki, które dotykały nie były objęte opróbowaniem, w strefach tektonicznych wyraźnych osłabień (zmniejszenia wytrzymałości gruntów). Ponadto pobiera się próbki gruntów w przypadku użyskania (w kategorii C1) zbyt dużych rozrzutów (współczynników zmienności) parametrów fizyczno-mechanicznych dla wydzielonych zespołów warstw geotechnicznych2 (pakietów). Dodatkowo pobiera się próbkę, jeśli to wynika z potrzeb projektowych.

Pobrane próbki do badań parametrów wytrzymałościowych i odkształceniowych powinny spełniać wymogi klasy I.

W badaniach polowych wszystkie pobrane próbki powinny być objęte szczegółowym opisem makroskopowym, przy zwróceniu głównej uwagi na występowanie różnego rodzaju defektów materiału gruntowego/skalnego. Opis makroskopowy powinien być wzbogacony o oznaczenia przeprowadzone prostymi, kieszonkowymi przyrządami typu ścinka (pocket penetrometer).

Dla rejonu zwałowiska zewnętrznego w przypadku występowania gruntów o niewystarczającej nośności należy przewidzieć i wykonać badania polowe:

— sondą statyczną CPTU,
— sondą obrotową PSO-1.

Badania laboratoryjne gruntów w kategorii B norma BN-82/0403-02 dzieli na dwie grupy:

a) badania dla ogólnego postępu w rozpoznaniu właściwości wytrzymałościowych jednorodnych warstw litologiczno-stratygraficznych.

2Zespół warstw geotechnicznych (pakiet), to część podłoża gruntowego obejmująca kilka warstw, wydzielona w celu ustalenia dla niej uogólnionej (charakterystycznej) cechy (parametru).
b) badania dla szczególnie newralgicznych rejonów projektowanej kopalni.

Badania wytrzymałości na ścignanie gruntów przeprowadza się w kategorii B w aparatach trójosiowego ściskania, bez konsolidacji, z pomiarem ciśnienia wody w porach. W zależności od warunków pracy gruntu w masywie przyjmuje się dwa schematy przykładowa obciążenia:

I — pionowe (osiowe) naprężenie σ_z — rosnące, poziome (promieniowe) naprężenie σ_r — stałe,

II — poziome (promieniowe) naprężenie σ_r — malejące, pionowe (osiowe) naprężenie σ_z — stałe.

Prędkość zmian obciążení σ_z (схемat I) i σ_r (схемat II) nie powinna być większa od 20 kPa w ciągu 15 min. Aparaty trójosiowe powinny być wyposażone w urządzenie do pomiaru ciśnienia wody w porach oraz dla schematu II — w urządzenie zapewniające przekazywanie na próbki stałego naprężenia pionowego.

W grupie badań przyjmuje się losowy wybór próbek o nienaruszonej strukturze (NNS) w liczbie 36 wytrzymałościowych (pojedynczych ścisków) oznaczeń dla każdej wydzielonej w kategorii C1 jednorodnej warstwy. Badania wytrzymałości na ścignanie wykonuje się przy minimalnym 4 różnych wartościach ciśnienia w komorze aparatu.

Do badań w grupie b reprezentującej grunty występujące w rejonach szczególnego zagrożenia, np. skarp stałych, pochylów itp., przeznacza się wszystkie próbki uzyskane z tych rejonów. Badania dla wydzielonej warstwy litologiczno-stratygraficznej nie powinny zawierać mniej niż 36 oznaczeń wytrzymałości (pojedynczych ścisków) wykonanych przy 6 różnych ciśnieniach w komorze aparatu. Stosowane ciśnienia powinny nawiązywać do obciążień występujących w masywie gruntowym.

Przeprowadzenie badań grupy a i b pozwala na wyznaczenie:
- parametrów standardowej wytrzymałości na ścignanie wyrażonych w efektywnych i całkowitych naprężeniach (przy stosowaniu hipotezy wytrzymałościowej Coulomba–Mohra),
- parametrów trwałej wytrzymałości (na podstawie parametrów wytrzymałości standardowej) i konstrukcji graficznej podanej w BN-82/0403-02,
- na obliczenie na potrzeby projektowania w kategorii B uzyskanych wyników badań trójosiowych:
 - wytrzymałości natychmiastowej,
 - oporu ścignania na stykach pierwotnych (nienaruszonych) i naruszonych.

Wszystkie badania wytrzymałości na ścignanie muszą mieć wyznaczone podstawowe parametry fizyczne.

Dalszemu uszczegółowieniu należy poddać badania próbek gruntu pobranych z rejonu projektowanego zwałówiska. W badaniach określa się:
- wytrzymałość na ścignanie (kąt tarcia wewnętrznego, spójność),
- moduły ściśliwości (pierwotnej i wtórnej),
- współczynnik konsolidacji.

Liczba badań wynika ze zmienności (niejednorodności) gruntów i powinna pozwolić na ustalenie parametrów charakterystycznych (obliczeniowych) dla każdej wydzielonej warstwy geotechnicznej. Podczas wykonywania badań należy uwzględnić warunki przyszłej pracy gruntu, co dotyczy zarówno warunków odpływu, jak i panujących obciążeń. Przy ocenie nośności podłoża zwałowiska powinny być wykonane badania w:
— aparacie trójosiowego ściskania metodą CIU, CAU lub CID,
— konsolidometrze przystosowanym do wysokich ciśnień.

3.1.1.5. Zakres badań geologiczno-inżynierskich w kategorii A
Badania geologiczno-inżynierskie przeprowadzane w trakcie eksploatacji złoża mają za zadanie:
— sprawdzenie, w jakim stopniu przewidywane w dokumentacjach warunki geologiczno-inżynierskie odpowiadają rzeczywistym warunkom udostępnionym w trakcie prowadzenia robót górniczych,
— dokonanie korekty zaprojektowanych wysokości i nachyleń zboczy odkrywki.
Obserwacje i dokumentowanie warunków oraz procesów geologiczno-inżynierskich w trakcie prowadzenia robót górniczych służą jako podstawa do sporządzania unaczeńionych modeli prognozujących i pozwalają na dokonanie korekty modelu prognozującego z kolejnym przybliżeniem do modelu rzeczywistego.
Podczas prac terenowych wykonywanie robót górniczych stwarza możliwość zebrania obserwacji, w szczególności dotyczących wpływu opadów atmosferycznych na zachowanie się skarp i pólke, zwłaszcza roboczych. W górnictwie odkrywkowym wykonaniu całego zakresu badań geologiczno-inżynierskich powinna towarzyszyć pełna analiza zjawisk wywołanych działaniem wody. Najwięcej kłopotów przysparzają wody znajdujące się w górotworze: resztowe, które nie zostały odprowadzone mimo prac odwadniających, opadowe oraz pochodzące z roztropów. Bardzo ważne jest prowadzenie i notowanie (kartowanie) bieżących kompletnych obserwacji geologiczno-inżynierskich.
W fazie budowy wkupu otwierającego powinny być wykonane następujące prace:
— dokumentacyjne, dotyczące szczegółowego zdjęcia geologicznego skarp wyrobiska i zwałowiska w skali nie mniejszej niż 1:5000,
— dotyczące udokumentowania czynnych procesów geodynamicznych zachodzących na skarpach,
— dokumentacyjne stanu odwodnienia kopalni i jego wpływu na warunki geologiczno-inżynierskie kopalni,
— dotyczące sprawdzających w przypadku uzasadnionych wątpliwości badań właściwości fizyczno-mechanicznych gruntów i porównanie ich z wynikami uzyskanymi w trakcie dokumentowania złoża,
— dalsze szczegółowe udokumentowania podłoża zwałowiska zewnętrznego, rozpoznanie właściwości gruntów tworzących zwałowisko, dokumentowanie zjawisk i procesów rozwijających się na skarpach zwałowiska oraz wpływu technologii sypania zwałowiska na jego stateczność.
W szczególnych sytuacjach, wynikających z potrzeb eksploatacyjnych lub w sytuacjach zagrożeń górniczych, pobieranie próbek do dodatkowych badań uzupełniających odbywa się na udostępnionych skarpach w postaci monolitów lub z wierć. Przede wszystkim w tej fazie prowadzi się rozpoznanie uzupełniające na terenie podłoża zwałowiska. Próbki pobiera się cienko-

W kategorii A, w fazie eksploatacji prowadzi się badania laboratoryjne w dużym zakresie. Norma BN-82/0403-02 w tej fazie przewiduje badania:

— gruntów zwałoowych (zwałoowanych),
— wytrzymałości trwałej gruntów o naturalnej strukturze i wilgotności (NNS),
— wytrzymałości styków warstw,
— rozpoznawcze dla dalszych faz eksploatacji.

Grunt zwałoowe mają dwustopniową piętrową strukturę i uznaje się je za ośrodek rozdrobniony drugiego rodzaju (S. Dimitruk, 1965). Stopień pierwszy stanowi struktura wewnętrzna poszczególnych otoczaków czy brył. Poszczególne otoczaki tworzą z kolei stopień drugi. Makrostruktura gruntów zwałoowanych z punktu widzenia geologii inżynierskiej jest najbardziej zbliżona do makrostruktury bryłowej. W badaniach laboratoryjnych należy ustalić:

a) zależność między gęstością objętościową \(\rho \) a naprężeniem pionowym \(\sigma \),

b) zależność między oporem ściskania \(\tau_{sw} \) a naprężeniem normalnym \(\sigma_n \).

Badania a należy przeprowadzić w aparacie skrzynkowym i stoliku wibracyjnym na minimum 36 próbkach dla każdego rodzaju (typy) gruntu. Badania b wykonuje się dla wydzielonej warstwy gruntu na co najmniej 36 próbkach, przy co najmniej 6. różnych wartościach obciążenia pionowego stosowanego w aparacie skrzynkowym. Próbki gruntów używane do badań są odpowiednio przygotowane. Grunt NNS jest rozdrobniony do wymiarów grudek 0,2–0,6 cm, zagęszczony przez wibrowanie, a następnie ścinkany w aparacie skrzynkowym pozwalającym na badanie próbek o wysokości 5 cm. W wyniku tak przeprowadzonych badań (bardziej szczegółowa metodyka jest podana w BN-82/0403-02) otrzymuje się dwie funkcje: \(\rho = f(\sigma) \) i \(\tau_{sw} = f(\sigma_n) \).

Badania wytrzymałości trwałej gruntów o strukturze NNS polegają na testach pełzania wykonanych w aparatach trójosiowym ściskania. Aparat trójosiowy musi być wyposażony w urządzenie do przekazywania stałego obciążenia na próbkę podczas całego badania. Dla każdej wartości ciśnienia w komorze aparatu należy wykonać co najmniej 6 prób pełzania przy różnych wartościach naprężenia pionowego. W celu wyznaczenia parametrów trwałej wytrzymałości dla wydzielonej warstwy geotechnicznej, jest wymagane wykonanie pełzania przy co najmniej 4. różnych wartościach ciśnienia w komorze. Norma zaleca wykonywanie badań pełzania pod naprężeniami równymi: 0,3, 0,5, 0,6, 0,7, 0,8, 0,9 wytrzymałości standardowej \(\tau_f(q_f) \). W wyniku takich badań opracowuje się:

a) wykresy pełzania, odkształcenie w funkcji czasu \(e_z = f(t) \),

b) obliczenie prędkości odkształceń \(e_z \), odpowiadającej prostoliniowemu odcinkowi krzywej pełzania,

c) wykres zależności prędkości odkształceń od obciążenia \(e_z = f(\sigma_z) \).

Następnie z wykresu \(e_z = f(\sigma_z) \) odczytuje się wartość \(\sigma_{pT} \) odpowiadającą końcowi prostoliniowemu odcinku tej zależności. Na podstawie wartości \(\sigma_{pT} \) oblicza się współrzędne ścieżki
obciążenia dla danego ciśnienia. Aproksymacja punktów ścieżek obciążenia dla różnych wartości ciśnienia w komorze wyznacza:
— trwały kąt tarcia wewnętrznego,
— trwałą spójność.

Badania wytrzymałości na stykach warstw litologicznych przeprowadza się w aparacie trójosiowego ściśkania zgodnie z metodyką jak dla kategorii B. Do badań pobiera się próbki z ujawnionych podczas eksploatacji styków w liczbie co najmniej 36. sztuk dla każdego styku. Powierzchnia stykowa powinna być zorientowana w wyciętej próbce, aby pokrywała się z kierunkiem przewidywanej powierzchni ścięcia w komorze trójosiowej.

Badania rozpoznawcze dla dalszych faz eksploatacji na rozciągniętej części złoża prowadzi się zgodnie z metodyką jak w kategorii B.

3.2. Górnictwo podziemne

3.2.1. Etap badań wstępnych

Rozpoznanie złoża i otaczającego górotworu w etapie wstępnym (kat. C₂) jest realizowane głównie za pomocą wiertniczych otworów badawczych (niekiedy też badań geofizycznych) oraz oparte na analogii do eksploatacji w podobnych warunkach. Rozpoznanie to ma przede wszystkim charakter geologiczno-źlożowy (granica złoża, forma i budowa złoża, rodzaj i jakość kopalin itp.). Liczba otworów niezbędnych do takiego rozpoznania (ich wzajemne odległości) w zależności od stopnia skomplikowania budowy geologicznej (grupy złoża) i dla rodzajów kopalin podaje załącznik 1 Wytycznych... (1992). Część otworów badawczych (źlożowych) w ilości do około 10% winna być przeznaczona specjalnie na potrzeby badań geologiczno-inżynierskich. Otwory takie (otwory geologiczno-inżynierskie) winny być rdzeniowane od samej powierzchni terenu (jeśli wiercenia źlożowe wykonuje się w całości lub w części techniką bezrdzeniową) celem rozpoznania budowy i właściwości górotworu oraz występujących w nim procesów (na podstawie badań rdzenia skalnego) w całej strefie ponad łożem, aż do powierzchni terenu, ze szczególnym uwzględnieniem strefy stropowej i spągowej samego łoża. W pozostałych otworach badawczych (źlożowych) obserwacjami i wstępnymi badaniami geologiczno-inżynierskimi rdzenia wiertniczego należy objąć tylko strefę przyźlożową (strefę w otoczeniu planowanych wyrobisk). Na przykład dla łoża węgla kamiennego jest to strefa grubości 5–10 m nad stropem łoża (zależna od jego miąższości) oraz strefa co najmniej 3 m grubości poniżej spągu łoża (Rameowe wytyczne..., 1982; Instrukcja..., 1985). Dla łoża miedzi np. (wg A. Pietrzyńskiego, 1996) zaleca się dokładniejsze badania górotworu w strefie około 15 m nad stropem planowanych lub wykonywanych wyrobisk, a maksymalnie do 9 h (h — wysokość furty eksploatacyjnej).

Badania na rdzeniu wiertniczym poza strefą górotworu okalającą łożę (lub planowane wyrobiska górnicze), tj. w nadekładzie aż do powierzchni terenu, winny mieć tylko charakter identyfikacyjny, realizowany głównie w warunkach terenowych i obejmować:
— określenie uzysku rdzenia,
— opis litologiczny rdzenia, a w tym ocenę spękalności, porowatości, kawernistości itp.,
— makroskopową ocenę konsystencji skał ilastych (spoistych),
— badania wytrzymałości na jednoosiowe ściskanie (co najmniej na jednej próbce z każdej warstwy litologicznej profilu w każdym otworze) metodą obciążania punktowego w pracse przenośnej lub w laboratorium.

Badania te dają możliwość ogólnej oceny charakteru górotworu i jego zachowania nad obszarem eksploatacji. Charakter badań na rdzeniu wiertniczym zarówno z otworów geologiczno-inżynierskich, jak i z otworów złoŜowych w strefie przyzłoŜowej może się różnić zaleźnie od rodzaju złoŜa, głębokości i systemu podziemnej eksploatacji itp. Dla złoŜ węgla kamiennego (Ramowe wytyczne..., 1982; Instrukcja..., 1985) badania te obejmują:

— opis litologiczny rdzenia,
— określenie średniego uzysku rdzenia (u_r),
— określenie rzeczywistej średnicy rdzenia (d),
— określenie średniej długości kawałków rdzenia w odcinku badawczym (l_{kr}),
— oznaczenie krytycznej siły rozłupywania rdzenia (p_r) między współbieźnymi klinami w poprzek osi rdzenia (tylko w obrębie skał stropowych),
— oznaczenie krytycznej siły ściskania (p_c) na kierunku osi rdzenia między współbieźnymi stoŜkami (tylko w obrębie skał spągowych),
— oznaczenie średniej rozmakalności rdzenia ($r_{œr}$) (tylko w obrębie skał spągowych).

Na próbkach rdzenia węglowego z samego złoŜa dokonuje się:
— oznaczania średnicy wgniotów wykonanych w węglu i na wzorcowej stalowej belecze mliotkiem Poldiego.

W przypadku złoŜ miedzi rejonu legnickiego (A. Piestrzyński, 1996) zarówno w strefie przyzłoŜowej, jak i w strefie całego nadkłada wykonuje się w praktyce badania podstawowych parametrów fizyczno-mechanicznych na próbkach z rdzenia wiertniczego. Dla skał luźnych bada się gęstość objętościową i właściwą, wilgotność, granice konsystencji, kąt tarcia i spójność oraz wytrzymałość na jednoosiowe ściskanie, a dla skał zwięzłych — gęstość objętościową i właściwą, porowatość, nasiąkliwość, wytrzymałość na jednoosiowe ściskanie w powietrznosuchym stanie rdzenia oraz w stanie pełnego nasycenia wodą, moduł odkształcenia ogólnego i moduł sprężystości.

 Wyniki wstępnych badań skał stropowych i spągowych złoŜ węgla kamiennego słuŜą do przybliŜonego określania:

— Stopnia spękalności skał na podstawie wartości średniej długości kawałków rdzenia (średniego odciniku pomiędzy szczelinami na rdzeniu): $l_{kr} > 50$ cm; skały niespękane,
 $l_{kr} = 50–20$ cm; skały mało spękane,
 $l_{kr} = 20–8$ cm; skały mocno spękane,
 $l_{kr} < 8$ cm; skały bardzo mocno spękane.

— Klasyfikacji stropów wyrobisk w utworach karbońskich na podstawie oporów rozwarstwiania skał stropowych (R_{rr}) przy oznaczaniu krytycznej siły rozłupywania rdzenia (p_r), średniej długości kawałków rdzenia (l_{kr}), średniego uzysku rdzenia (u_r) i średniej rzeczywistej średnicy rdzenia (d). Stropy bezpośrednio dzielą się na sześć klas:

 I — stropy opadające natychmiast, $R_{rr} = 0–0,5$ MPa,
 II — stropy opadające, $R_{rr} = 0,5–1,5$ MPa,
 III — stropy częściowo samoönne łatwo przechodzące w stan zawalu, $R_{rr} = 1,5–3,0$ MPa.
Tabela 28

Klasyfikacja stropów w kopalni miedzi w aspekcie zagrożeń tąpaniami

<table>
<thead>
<tr>
<th>Klasa stropu</th>
<th>Wskaźnik stateczności stropu L_s</th>
<th>Charakterystyka zachowania się stropu</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$L_s \leq 15$</td>
<td>Skały stropowe o budowie drapieżawicznej i małych parametrach wytrzymałościowych. Bardzo duże zaangażowanie tektoniczne warstw stropowych. Współczynnik tektonicznego zaangażowania w granicach 0,00–0,25. Strop wykazuje skłonność do doszczelniania zębów na skutek samoczynnego obrywania i odpadania płyt skalnych.</td>
</tr>
<tr>
<td>II</td>
<td>$18 < L_s \leq 25$</td>
<td>Strop o zróżnicowanej budowie i wytrzymałości oraz zmiennym zaangażowaniu tektonicznym. Współczynnik tektonicznego zaangażowania 0,00 < M < 1,00. Obserwuje się tendencje do odpadania płyt lub bloków skalnych nad zrobami.</td>
</tr>
<tr>
<td>III</td>
<td>$25 < L_s \leq 50$</td>
<td>Strop o budowie grubołteczowej. Zaangażowanie tektoniczne stropu małe. Współczynnik tektonicznego zaangażowania 0,75 < M < 0,90. Lokalnie strop sztywny o dużej nośności, zdolny do akumulowania energii sprężystej i gwałtownego jej oddawania podczas okresowych jego zalamań.</td>
</tr>
<tr>
<td>IV</td>
<td>$L_s > 50$</td>
<td>Strop o budowie grubołteczowej. Zaangażowanie warstw stropowych bardzo małe. Współczynnik tektonicznego zaangażowania w granicach 0,90 < M < 1,00. Na całej powierzchni strop sztywny o dużej nośności, zdolny do akumulowania energii sprężystej i gwałtownego jej oddawania podczas okresowych jego zalamań.</td>
</tr>
</tbody>
</table>

Tabela 29

Klasyfikacja spągów w kopalni miedzi w zależności od średniej wytrzymałości warstwy skalnej do 2 m poniżej spągu wyrobiska

<table>
<thead>
<tr>
<th>Klasa spągu</th>
<th>1</th>
<th>2</th>
<th>Charakterystyka skal spągu</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>brak</td>
<td>do 30 MPa</td>
<td>W spągu bezpośrednim występują skały o małej wytrzymałości, nie wykazujące skłonności do akumulowania energii sprężystej. Brak w spągu warstwy skał o wytrzymałości powyżej 60 MPa</td>
</tr>
<tr>
<td>II</td>
<td>do 1,5 m</td>
<td>30–60 MPa</td>
<td>W spągu bezpośrednim występują skały o średniej wytrzymałości i wykazujące skłonności do akumulowania energii sprężystej. W spągu występują lokalnie warstwy o wytrzymałość powyżej 60 MPa</td>
</tr>
<tr>
<td>III</td>
<td>>1,5 m</td>
<td>>60 MPa</td>
<td>W spągu bezpośrednim występują skały o dużej wytrzymałości, wykazujące skłonności do akumulowania energii sprężystej oraz w całym oddziałać występuje warstwa skał o wytrzymałości powyżej 60 MPa</td>
</tr>
</tbody>
</table>

1 — miąższość warstwy skalnej w spągu bezpośrednim o wytrzymałości powyżej 60 MPa. 2 — średnia wytrzymałość warstwy skalnej w spągu do 2 m poniżej spągu wyrobiska.
IV — stropy samonośne o korzystnych parametrach stateczności i zawalowoci,
\[R_{rr} = 3,0–4,5 \text{ MPa}, \]
V — stropy nośne trudno przechodzące w stan zawalu, \[R_{rr} = 4,5–6,0 \text{ MPa}, \]
VI — stropy silnie zwiążłe bardzo trudno przechodzące w stan zawalu, \[R_{rr} > 6,0 \text{ MPa}. \]

— Klasyfikacji nośności (\(p\)) skał spągowych w utworach karbońskich na podstawie oznaczenia rozmakalności skał spągowych (\(r\)), krytycznej siły ściśkania rdzenia (\(p_c\)), średniej długości kawałków rdzenia (\(l_{tr}\)), średniego uzysku rdzenia (\(u_r\)) i średniej rzeczywistej średnicy rdzenia (\(d\)). Skały spągowe dzieli się na trzy klasy:

I — spągi o dużej nośności, \(p > 26 \text{ MPa},\)

II — spągi o średniej nośności, \(p = 26–6,5 \text{ MPa},\)

III — spągi o małej nośności, \(p < 6,5 \text{ MPa}.\)

 Wyniki wstępnych badań skał permsko-triasowych, występujących w nadkładzie i otoczeniu złóż miedzi, służy do przybliżonego określania ich charakterystyk geomechanicznej oraz oceny zachowania się górotworu w otoczeniu wyrobisk (tab. 28, 29). W szczególności na podstawie badań wstępnych dokonuje się geologiczno-inżynierskiej rejonizacji złóż ze względu na rodzaj, miąższość i następstwo warstw geologicznych otaczających złóż oraz jakościowej klasyfikacji stropów i spągów wyrobisk w aspektie zagrożeń tąpaniami na podstawie obliczeń wskaźnika stateczności (\(L_t\)):

\[
L_t = \frac{R_c}{c^2} \cdot \frac{S}{c^2} \cdot \frac{M}{S},
\]

\(R_c\) — wytrzymałość skał na ściśkanie,
\(S\) — średnia grubość ławic skał występujących w stropie,
\(M\) — współczynnik tektonicznego zaangażowania stropu wyrażający natężenie występowania spęków ciosowych, zminimalizowanych szczelin oraz uskoków (\(M = 0–1\)).

3.2.2. Etap badań podstawowych

Badania podstawowe (kat. C1) są oparte na rozpoznaniu złóż i otaczającego górotworu za pomocą zagęszczonej w stosunku do etapu badań wstępnych siatki wiertniczych otworów badawczych, wykonywanych z powierzchni terenu, a niekiedy badań geofizycznych. Odległości otworów (gęstość siatki otworów) w zależności od stopnia skomplikowania budowy geologicznej (grupy złóż) oraz rodzajów kopaliny podają Wytyczne...(1992). Rozpoznanie otworami ma głównie charakter udokładnionych badań geologiczno-złóżowych. Badania warunków geologiczno-inżynierskich winny tu mieć charakter bardziej systematyczny i ilościowo większy co do zakresu i rodzajów badań prowadzonych na próbkach rdzenia wiertnicznego. Część otworów badawczych (do około 15% ogólnej liczby otworów) rdzeniowanych od powierzchni terenu winna być specjalnie przeznaczona do badań geologiczno-inżynierskich, a ich lokalizacja uwzględniać szczególnie rejon przewidywanych górniczych robót udostępniających i przygotowawczych (szyby, przekopy główne itp.) oraz rejon stwierdzonych badaniami wstępnymi skomplikowanych warunków geologicznych (rozłamy i strefy tektoniczne, zjawiska krzemowe, kurzawkowe itp.).
Rodzaje badań na rdzeniach wiertniczych zarówno z otworów geologiczno-inżynierskich dla całego profilu wiercen, jak i otworów złożowych dla strefy przyzłożowej (stropowej i spągowej planowanych wyrobisk) są w dużej mierze takie same, jak w etapie badań wstępnych, realizowane jednak w większym zakresie w warunkach laboratoryjnych. Większa liczba próbek z rdzeni wiertniczych pozwala nie tylko na ilościowe zwiększenie, a tym samym udokładnienie badań, lecz i na rozszerzenie badań o dodatkowe cechy skały, charakteryzujące właściwości i zachowanie się masywu skalnego w otoczeniu wyrobisk podziemnych. Dla złoż węgla kamiennego (skal karbońskich) są to głównie:

— Badania wskaźnika skłonności skały i węgla do tąpana (W_{ET}), wyrażonego stosunkiem energii straconej w trakcie 1. cyklu obcięcia (E_{spr}) i odcięcia próbki skalnej (E_{str}). Sposób określenia W_{ET} ilustruje rysunek 12. Według wartości $W_{ET} = E_{spr} : E_{str}$ skały dzielą się na trzy klasy:

I — skała silnie skłonna do tąpana, $W_{ET} > 5$,
II — skała średnio skłonna do tąpana, $W_{ET} = 5–2$,
III — skała słabo skłonna do tąpana, $W_{ET} < 2$.

— Określenie wskaźnika facjalności stropu (W_f) charakteryzującego naturalną skłonność do tąpan stropowych i wyrażonego sumą iloczynów grubości poszczególnych warstw stropowych w 30-metrowym pakiecie skał nad stropem wyrobisk (A. Kidybiński, 1982). Według wartości:

$$W_f = \frac{W_1 + W_2 + W_3 \ldots + W_n}{n - 2},$$

gdzie:

$W_1, \ldots W_n$ — iloczyny grubości poszczególnych warstw stropowych oraz odpowiedniej wagi, która dla węgli i ilówków = 1, dla piaskowców = 2,

n — liczba warstw skalnych w 30-metrowym pakiecie nad stropem,

wydzielą się 3 klasy skał:

I — silnie skłonne do tąpana, $W_f = 60–40$,
II — średnio skłonne do tąpana, $W_f = 40–20$,
III — słabo skłonne do tąpana, $W_f = 0–20$.

— Badanie energetycznego wskaźnika urabialności (U), wyrażającego miarę pracy koniecznej do rozdrobnienia skały i odniesionej do jednostki objętości skały. Według tego wskaźnika skały dzielą się na sześć klas:

I — bardzo łatwo urabialne, $U = 0,3–0,8 \cdot 10^{-1}$ MJ/m³,
II — łatwo urabialne, \(U = 0,8–1,35 \cdot 10^{-1} \text{ MJ/m}^3 \),
III — średnio urabialne, \(U = 1,35–1,7 \cdot 10^{-1} \text{ MJ/m}^3 \),
IV — trudniej urabialne, \(U = 1,7–1,9 \cdot 10^{-1} \text{ MJ/m}^3 \),
V — trudno urabialne, \(U = 1,5–2,2 \cdot 10^{-1} \text{ MJ/m}^3 \),
VI — bardzo trudno urabialne, \(U > 2,2 \cdot 10^{-1} \text{ MJ/m}^3 \).

W zależności od klasy urabialności są dobierane rodzaje maszyn urabiających skały oraz moce tych maszyn, a także planowane sposoby wstępnego osłabienia skał (np. strzelanie zruższające, właczanie wody itp.).

— Określenie wskaźnika zwięzłości \(f_z \) metodą tłuczenia, charakteryzującego odporność skały na zniszczenie w niej sił spojności i skłonności do wyrzutów skał i gazu.
— Określenie pęcznienia i ciśnienia pęcznienia skał ilastych.
— Określenie przewodności cieplnej, temperatury zamarzania, zmian objętościowych przy zamarzaniu oraz wytrzymałości po zamrożeniu, jeśli przewiduje się mrożenie górotworu (BN-83/0410-03).

Dla skał towarzyszących złożom miedzi (skały permsko-triasowe) na etapie badań podstawowych wykonuje się podobne badania jak w etapie wstępnym, lecz liczniejsze ilościowo i rozszerzone o dokładniejsze opisy i badania cech petrograficzno-strukturalnych oraz inne właściwości skał, jak:
— wytrzymałość skał na rozrywanie \((R_r) \), np. metodą brazylijską,
— wytrzymałość skał na zginanie \((R_g) \),
— wytrzymałość skał na ścianie \((R_o) \), np. metodą klinów, matrycowego ścianania płytek lub ścianania próbek nieforemnych w okleinie,
— dynamiczny wskaźnik zwięzłości (f_d).

Badania te pozwalają na dokładniejszą ocenę zachowania się górotworu wokół wyrobisk i ich zagrożeń ze strony zjawisk geodynamicznych oraz rejonizację górotworu. Zarówno dla podziemnych wyrobisk górniczych związanych z eksploatacją złóż, jak i wykonywanych dla innych celów, winno się w etapie badań podstawowych określić na próbkach z rdzeni wiertniczych wartości wskaźników RQD oraz RMR (rozdział D.4).

Wskaźnik RQD charakteryzuje nie tylko stopień szczelinowatości skały, lecz również pośrednio ich jednorodność, wytrzymałość itp. Wskaźnik RMR (wskaźnik jakości masywu skalnego), określany na podstawie sześciu ocenianych punktowo różnych cech masywu (wytrzymałość skały na ściskanie, podzielność rdzenia wiertniczego, charakter spęków, zawodnienie masywu, orientacja spęków w stosunku do kierunku obciążenia), pozwala (rys. 13) na ocenę stateczności, nośności, urabialności i innych inżynierskich właściwości masywu skalnego (Z. T. Bieniawski, 1989).

Na podstawie całości wykonanych prac w etapie badań podstawowych niezbędne jest ustalenie reprezentatywnych (miarodajnych, obliczeniowych) wartości cech fizyczno-mechanicznych (geotechnicznych) skały, z wykorzystaniem metod statystyki i z uwzględnieniem lokalnej i regionalnej zmiennych skały, zwłaszcza w funkcji głębokości. Na tym etapie badań winno się w górotworze wydzielić serie geologiczno-inżynierskie o zbliżonych właściwościach mechanicznych lub, w miarę możliwości, warstwy geotechniczne o większym stopniu jednorodności cech oraz dokonać rejonizacji geologiczno-inżynierskiej złoża i przedstawić ją w postaci map warunków geologiczno-inżynierskich wykorzystując całość obserwacji i badań geologicznych i geologiczno-inżynierskich.

3.2.3. Dokumentacja geologiczno-inżynierska na etapie badań szczegółowych (uzupełniających)

Etap badań szczegółowych jest realizowany w trakcie wykonawstwa robót górniczych. W przypadku złóż są to robót górnicze udostępniające, przygotowawcze oraz eksploatacyjne. Badania geologiczno-inżynierskie skały w tym etapie prowadzone są zarówno na materiale z wiercen małodymensyjnych prowadzonych z wyrobisk górniczych, jak i na monolitycznych próbkach skały pobieranych z ociosów wyrobisk, przy czym badania cech wytrzymałościowo-deformacyjnych prowadzi się w rozszerzonym zakresie, a badania cech fizycznych tylko kontrolnie w stosunku do etapów wcześniejszych. Badania i pomiary prowadzi się też bezpośrednio w wyrobiskach (in situ). Na etapie badań szczegółowych zachodzi konfrontacja wyników badań z etapów wcześniejszych ze stanem rzeczywistym, obserwowanym i badanym w wyrobiskach, między innymi w wyniku kartowania wyrobisk. Dokonuje się też dokumentowania zmian zachodzących w górotworze pod wpływem wykonawstwa wyrobisk. Odsłonięcie górotworu w wyrobiskach pozwala na jego dokładniejsze opróbowanie w nawiązaniu do obserwowanej bezpośrednio budowy oraz na opróbowanie szczególnych stref w górotworze (słabe wkładki skały, strefy kontaktów warstw geologicznych, powierzchnie tektoniczne, strefy zwietrzenia itp.) i poddanie próbek skały badaniom zarówno standardowym, jak i specjalnym. Do badań specjalnych na próbkach skalnych, prowadzonych w nawiązaniu do potrzeb danego obiektu górniczego, można tu zaliczyć:

— określenie reologicznych właściwości skały, a w tym wytrzymałości długotrwałej,
— określenie wytrzymałościowo-deformacyjnych właściwości skał w tzw. fazie pozniszczeniowej (ważne dla filarów górniczych),
— określenie wytrzymałościowo-deformacyjnych właściwości skał w warunkach obciążeń dynamicznych (cyklicznych i udarowych),
— określenie wytrzymałościowo-deformacyjnych właściwości skał w warunkach obciążeń trójosiowych i dużych ciśnień oraz ewentualnie podwyższonej temperatury.

Badania standardowe, a zwłaszcza specjalne cechy fizyczno-mechanicznych, często nawiązuje się do szczegółowych badań cech petrograficzno-strukturalnych wydzielonych rodzajów skał (charakter i wielkość ziarn lub kryształów, rodzaj i struktura spoiwa skalnego, cechy porowatości skały itp.).

Badania i obserwacje prowadzone w wyrobiskach (in situ) najczęściej obejmują:
— wielkoskalowe badania wytrzymałości i odkształcalności skał na specjalnie wyciętych i przygotowanych blokach skalnych,
— wielkoskalowe badania wytrzymałości na ściananie bloków skalnych, zwłaszcza na powierzchniach uwarstwienia i kontaktach różnych warstw geologicznych,
— wielkoskalowe badania odkształcalności górotworu metodą obcięcia spagą płytą sztywną lub metodą radialnego obcięcia ościosów wyrobiska podziemnego,
— badania szczelinowatości górotworu (sondami areometrycznymi, metodami presjometrycznymi, próbnikami itp.),
— badania naprężeń panujących w górotworze metodami bezpośrednimi lub pośrednimi,
— obserwacje i pomiary przejawów ciśnienia górotworu (wypór skał spagowych w wyrobisku, rozwartkowania się skar stropowych i na oiciosach),
— geofizyczne pomiary zasięgu stref odprężenia i spękania górotworu,
— dokładne pomiary gęstości i kierunków oraz charakteru powierzchni spękań górotworu (praktycznie niemożliwe do przeprowadzenia na próbkach skalnych rdzenia wiertniczego),
— masowe profilowanie ościosów za pomocą pośrednich metod oceny wytrzymałości i odkształcalności skał (np. młotkiem udarowym Schmidta, penetrometrami itp.),
— obserwacje charakteru stref uskokowych,
— dokładne pomiary i obserwacje charakteru, następstwa i grubości ławic skalnych oraz pakietów skalnych (także na podstawie płytkich kierunkowych otworów wierconych z wyrobisk), praktycznie trudne do oceny przy stromym ułożeniu warstw na podstawie rdzeni otworów powierzchniowych.

Wymienione badania, a czasami jeszcze inne geologiczno-inżynierskie (geomechaniczne) badania i obserwacje skał i górotworu prowadzone na etapie badań szczegółowych, mogą być bardzo różnorodne. Decyzję o rodzaju i zakresie tych badań musi podejmować geolog dokumentujący złode (lub masowy skalny przy wykonywaniu wyrobisk podziemnych nie związanych z eksploatacją złóź) w nawiązaniu do konkretnych warunków geologiczno-inżynierskich, rodzajów skał, stopnia złożoności budowy geologicznej, rodzaju kopaliny i głębokości jej występowania (głębokości wyrobisk), rodzaju obiektów inżynierskich, warunków ich pracy (np. obiekty hydrotechniczne, komunikacyjne), dotychczasowych doświadczeń z eksploatacji podobnych złóź lub obiektów itp. Badania i obserwacje geologiczno-inżynierskie prowadzone na wszystkich etapach i przedstawiane w postaci dokumentacji geologiczno-inżynierskiej, winny przede wszystkim odpowiadać na pytania dotyczące warunków wykonawstwa wyrobisk podziemnych, a w tym zwłaszcza zagrożeń dla ludzi i sprzętu ze strony naturalnych i wzbudzonych eksploatacją zjawisk geodynamicznych oraz utrudnień wykonawstwa i eksploatacji wyrobisk. W efekcie winny być pomocne w wyborze systemu eksploatacji, doborze rodzajów obudowy wyrobisk, do-
3.3. Górnictwo otworowe

Otworowa eksploatacja złoże surowców stałych (górników otworowe) jest w porównaniu do eksploatacji otworowej złoże płynnych dość młodą dziedziną górnictwa. Nie ma ona jeszcze większego zastosowania oraz doświadczeń w zakresie potrzeb dokumentowania geologiczno-inżynierskiego. W kraju techniką otworową eksploatacji złoże siarki (podziemny wytop), niektóre złoże soli kamiennego (podziemne wyługowywanie) oraz próbne złoże piasków szklarskich i węgla brunatnego (podziemne hydrourabianie).

Badania geologiczno-inżynierskie wstępne i podstawowe dla celów górnictwa otworowego winny być w zasadzie takie same jak dla górnictwa podziemnego i obejmować podstawową charakterystykę budowy i właściwości fizyczno-mechanicznych górotworu w strefie ponad złożeem i w jego otoczeniu. Wszystkie te badania są prowadzone na rdzeniach wiertniczych. Nie wyróżnia się tu etapu badań szczegółowych, jak w wyrobiskach podziemnych, z powodu praktycznej niedostępności do badań i obserwacji pustek poeksploatacyjnych po otworowej metodzie eksploatacji. W zależności od metody i rodzaju eksploatowanego otworowo złoża, na próbkach rdzeni prowadzi się badania specjalne.

Dla złoże siarki eksploatowanych metodą podziemnego wytopu badania specjalne według S. Rybickiego (1973) obejmują:
— określenie przewodności i pojemności cieplnej skał złożowych i otaczających złoże,
— określenie wytapiałości siarki i wskaźnika wytapiałości,
— określenie wytrzymałości na ściskanie skał złożowych po wytopie siarki,
— określenie porowatości i współczynnika filtracji wody skał złożowych po wytopie siarki.

Dla złoże soli eksploatowanych metodą podziemnego ługowania do badań specjalnych zalicza się badanie rozmywalności soli.

4. GEOLOGICZNO-INŻYNIERSKA OCENA MASYWU GRUNTOWEGO (SKALNEGO)

Stan nieciągłości masywów gruntowych (skalnych) można określić poprzez parametry szczelinowatości (A. Kidybiński, 1982):
a. Szczelinowatość liniową \((S_L)\):
\[
S_L = \frac{n}{L},
\]
gdzie:
\(n\) — liczba świąk,
\(L\) — długość.

b. Szczelinowatość powierzchniową \((S_p)\):
\[
S_p = \sum \frac{m \cdot l}{p},
\]
gdzie:
\(m\) — liczba śladów świąk,
\(l\) — długość pojedynczego pęknięcia w granicach analizowanej powierzchni,
\(p\) — jednostka powierzchni.

c. Szczelinowatość przestrzenną (objętościową) \((S_v)\):
\[
S_v = \sum \frac{r \cdot s}{V},
\]
gdzie:
\(r\) — liczba świąk/szczelin,
\(s\) — powierzchnia pojedynczego pęknięcia/szczeliny,
\(V\) — objętość analizowanej skały.

d. Wskaźnik \(RQD\) (Deere’a):
\[
RQD = \frac{L_l}{L_t} \cdot 100\%,
\]
gdzie:
\(L_l\) — całkowita długość odcinków rdzenia, których długość jest większa od podwójnej średnicy,
\(L_t\) — całkowita długość analizowanego rdzenia,

określa nieciągłość masywu i ustala się go na podstawie pomiarów rdzenia wiertniczego.

e. Wskaźnik spękania (tzw. faktor kiruński) J. Hansagi \((C)\):
\[
C = \frac{1}{2S} \left(p \cdot H + \frac{K}{n} \right),
\]
gdzie:
\(p\) — maksymalna liczba próbek cylindrycznych, którą można uzyskać do badania na \(R_c\),
\(S\) — długość rdzenia,
\(H\) — wysokość próbki cylindrycznej,
\(K\) — sumaryczna długość odcinków rdzenia długości większej niż średnica,
\(n\) — liczba odcinków rdzenia długości większej niż średnica.

f. Parametry podzielności rdzenia wiertniczego:
— uzysk rdzenia (z dokładnością 0,01) \(U(\%) \),
— długość średnia odcinków między spekkaniami dzielącymi rdzeń na kawałki \(l_{lp} \) (cm), pomiary z dokładnością 0,5 cm,
— rzeczywista średnia rdzenia \(d \).

\[K_s = \frac{\Delta r}{L_r} \cdot 100\% , \]

gdzie:
\(r \) — straty rdzenia (m)
\(L_r \) — długość otworu wiertniczego (m).

Ocena geologiczno-inżynierska, z uwagi na złożoność zachowania masywu skalnego, powinna uwzględniać jak największej różnych czynników (parametrów). Z wielu propozycji, jako najbardziej kompleksowe i kompletne należy wymienić klasyfikacje:
— Z. T. Bieniawskiego (1989) (system punktowy),
— N. Bartona i in. (1974) na podstawie wskaźnika \(Q \).

Klasyfikacja Z. T. Bieniawskiego uwzględnia 6 podstawowych parametrów masywu skalnego:
1) wytrzymałość na ściskanie (0–15),
2) \(RQD \) (3–20),
3) odstęp speków (5–30),
4) charakter speków (0–25),
5) zawodnienie (0–10),
6) orientację szczelin (speków) (0–60).

Ogólna ocena jakości masywu skalnego wynika z sumy punktów podanych w nawiasach przy poszczególnych czynnikach (\(RMR \)). Wyróżnia się 5 klas:
I — bardzo mocne masywy, \(RMR = 100–81 \) pkt.,
II — mocne masywy, \(RMR = 80–61 \) pkt.,
III — średnie masywy, \(RMR = 60–41 \) pkt.,
IV — słabe masywy, \(RMR = 40–21 \) pkt.,
V — bardzo słabe masywy, \(RMR = 20–0 \) pkt.

Klasyfikacja według wskaźnika \(Q \) również uwzględnia 6 ważnych parametrów masywu:
1) \(RQD \) — wskaźnik nieciągłości masywu (0–100%),
2) \(I_n \) — wskaźnik liczby systemów speków (0,5–20),
3) \(I_r \) — wskaźnik szorstkości szczelin (0,5–4),
4) \(I_a \) — wskaźnik zwietrzenia ścianek szczelin (0,75–20),
5) \(I_w \) — wskaźnik zawodnienia (0,05–1),
6) \(SRF \) — wskaźnik odprężenia masywu (1–20),

w następującej funkcji:
\[
Q = \frac{RQD}{I_n} \cdot \frac{I_r}{I_a} \cdot \frac{I_w}{SRF} ,
\]

Obliczeniowa wartość wskaźnika \(Q \) może zmieniać się w granicach 0,001–1000 i uwzględnia około 300 000 kombinacji geologicznych.
Między obydwoma klasyfikacjami istnieje zależność funkcyjna — są porównywalne (A. Kidybiński, 1982).

5. BUDOWNICTWO LINIOWE

5.1. Informacje ogólne

Do obiektów liniowych zalicza się przede wszystkim autostrady, drogi, kolej, rurociągi, kanaly, linie energetyczne przesyłowe itp. Z obiektami liniowymi funkcjonalnie są związane obiekty towarzyszące:
— obiekty na trasie — mosty, wiadukty, przepusty,
— obiekty obsługi — stacje kolejowe, stacje benzynowe, motele, budynki obsługi, stacje transformatorowe, budowle hydrotechniczne związane z kanalami, budynki zapleczu itp.
— obiekty eksploatacji materiałów budowlanych — żwirownie, piaskownie, glinianki oraz kamieniolomy.

Projekt prac geologicznych należy opracować zgodnie z zasadami ogólnymi podanymi w części A. Inwestycje liniowe z natury nie wymagają zbyt głębokich i obszernych badań. Najczęściej będą to płaskie wiercenia i sondowania różnego typu. Kartowanie geologiczno-inżynierskie jest ograniczone w zasadzie do obszarów, na których jest rozpatrywany wielowariantowy przebieg trasy lub zachodzi konieczność określania głębokości i zasięgu gruntów słabych, przede wszystkim torfów, przede wszystkim torfów. W metodach geologicznych szczególną rangę ma interpretacja zdjęć lotniczych, która przy określaniu warunków geologicznych terenu dla obiektów liniowych, ze względu na stosunkowo płaskie podłoże budowlane, jest bardzo przydatna. Umiejętna fotointerpretacja zdjęć lotniczych, uzupełniająca szczegółowym przeglądem terenu, pozwoli na racjonalne ograniczenie wykonywania wyrobisk.

5.2. Interpretacja zdjęć lotniczych

Do interpretacji zdjęć lotniczych płaskiego podłoża budowlanego dla tras obiektów liniowych należy stosować ogólne zasady interpretacji zawarte w podręcznikach.

Obecnie wiele biur projektujących drogi, szczególnie autostrady, stosuje automatyczne wspomaganie komputerowe w procesie projektowania, wykorzystujące cyfrowe podkłady topo-
Rys. 14. Schemat organizacji projektowania i badań geologiczno-inżynierskich przy budowie autostrady
graficzne w postaci cyfrowej ortofotomapy i numerycznego modelu terenu. Podstawą opracowania wymienionych podkładek topograficznych są stereogramy lotnicze lub satelitarne. Z tego powodu zaleca się wykorzystanie stereogramów do geologicznej interpretacji i do pracy w terenie. W tym przypadku przenoszenie treści geologicznej na cyfrowe podkłady topograficzne będzie bardzo dokładne i łatwe. Ogólny schemat organizacji projektowania inżynierskiego i badań geologiczno-inżynierskich dla autostrad podany jest na rysunku 14.

Z ogólne stosowanych elementów rozpoznawczych przy interpretacji zdjęć lotniczych w celu rozpoznania płytkiego podłoża budowlanego obiektów liniowych, największą przydatność wykazują: stopień szarości, tekstura zdjęcia lotniczego i element roślinny.

Poszczególne obszary wydzielają się na zasadzie zróżnicowania samego stopnia szarości lub też różnej struktury i tekstury wydzielenia w stosunku do otoczenia. Na obszarze Niżu Polskiego jasne fototony odpowiadają będą przede wszystkim piaskom plażowym i wydmom. Szczególnie te ostatnie można łatwo wydzielić z otoczenia. Na południu Polski jasne fototony są często związane z występowaniem wodnych skał, szczególnie wapieni.

Ciemne fototony, co jest ważne przy interpretacji podłoża budowlanego pod drogi, są przede wszystkim związane z występowaniem słabszych gruntów — torfów, namulców i podmokłości. W obrębie tych samych gruntów, płytsze występowanie zwierciadła wody gruntowej jest zaznaczone na zdjęciu lotniczym ciemniejszym odcieniem szarości.

Wskutek efektu hiperstereoskopowego podczas analizy zdjęć lotniczych pod stereoskopem, możliwe jest bardziej dokładne niż w terenie wydzielenie poszczególnych tarasów, form krasowych, osuwiskowych itp. Przy wykorzystaniu istniejących zdjęć lotniczych z różnych lat można dokonać analizy rozwoju form geologicznych w czasie. Na przykład szybkość rozwoju jarów lessowych, osuwisk, zapadlisk krasowych, cofania się klifów i innych krawędzi erozyjnych może mieć wpływ na ocenę warunków geologiczno-inżynierskich przy lokalizacji obiektów liniowych.

Obserwacja zdjęć lotniczych pod stereoskopem zezwala na powiązanie fototonu z formami rzeźby terenu. Szata roślinna jest także bardzo wrażliwa na stopień nasycenia wody. Wilgotność jest z kolei wiodącą cechą geotechniczną, związana z konsystencją gruntów. Ponieważ podłoże budowlane dla obiektów liniowych jest najczęściej bardzo płytkie, a wpływ budowy geologicznej i warunków hydrogeologicznych na glebę i roślinność obejmuje strefę głębokości 2–4 m, dlatego zastosowanie fotogeologii w budownictwie drogowym jest najbardziej uzasadnione i efektywne.

5.3. Badania geofizyczne

Dla obiektów liniowych wykonuje się badania geofizyczne najprostszymi metodami w celu:
— rozpoznania określonych elementów budowy geologicznej wzdłuż trasy lub rejonu złoża,
— określenia zagrożenia korozjnego,
— określenia niektórych cech geologiczno-inżynierskich podłoża.

Badania geofizyczne stosuje się przede wszystkim na odcinkach, na których projektowana głębokość robót ziemnych związanych z realizacją obiektu liniowego przekracza 4–5 m oraz gdzie spodziewany kontrast fizyczny rokoku poztywne wyniki.
Do podstawowych zadań geologicznych przy zastosowaniu metod geofizycznych należą między innymi:
— określenie głębokości występowania stropu skalnego podłoża, warstwy gruntu spoistego itp.,
— określenie strefy zwietrzałej,
— okonturowanie złoż materiałów budowlanych,
— racjonalne lokalizowanie wiercien w miejscach anomalii geofizycznych i w rejonach charakterystycznych.

Wzdłuż tras rurociągów określa się zagrożenie korozjone metodą jednopoziomowego profilowania elektrooporowego. Stopień zagrożenia korozjonego oraz potrzebę zastosowania innych metod można odczytać z tabeli 30.

Tabela 30

<table>
<thead>
<tr>
<th>Parametry określające właściwości korozjone gruntu</th>
<th>Stopień zagrożenia korozjonego</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wysoki</td>
</tr>
<tr>
<td>Opór właściwy gruntu (Ω/㎡)</td>
<td>< 20</td>
</tr>
<tr>
<td>pH gruntu</td>
<td>< 4,5</td>
</tr>
<tr>
<td>Aktywność korozjna (g) (metoda Cortefielda)*</td>
<td>> 3</td>
</tr>
<tr>
<td>Analiza chemiczna **, związki organiczne (%)</td>
<td>> 1,5</td>
</tr>
<tr>
<td>Azotany (%)</td>
<td>> 0,001</td>
</tr>
</tbody>
</table>

* Badania aktywności korozjonej należy wykonać w przypadku, gdy wartość oporu właściwego świadczy o innym stopniu zagrożenia korozjonego niż wyniki pomiaru pH gruntu.

** Analizę chemiczną należy wykonać w miejscach o dużym zanieczyszczeniu gruntu, np. przez ścieki zakładów przemysłowych.

5.4. Zależność badań od etapu projektowania

Dla dużych inwestycji liniowych badania wykonuje się najczęściej maksymalnie w trzech etapach:
— rozpoznawczym (dla studium przedprojektowego),
— szczegółowym lub podstawowym (w celu uzyskania wskazania lokalizacyjnego i decyzji lokalizacyjnej lub o warunkach zabudowy i zagospodarowania terenu ewentualnie dla projektu budowlanego względnie wykonawcze),
— uzupełniającym (w miarę potrzeb dla projektowania, a szczególnie dla budowy, eksploatacji i modernizacji obiektów).

W przypadku celowości wykonywania badań geologiczno-inżynierskich w trzech etapach proponuje się odpowiednie zakresy badań. Rodzaje badań w zależności od etapów projektowania podano w tabeli 31.
Zakres badań w zależności od etapu projektowania obiektów liniowych

<table>
<thead>
<tr>
<th>Obiekty inżynierskie</th>
<th>Przegląd terenu</th>
<th>Förininterpretacja</th>
<th>Karto-wanie</th>
<th>Prace geodezyjne i pomiarowe</th>
<th>Badania geologiczno-inżynierskie i geotechniczne</th>
<th>Badania geofizyczne</th>
<th>Georadarowe i inne</th>
<th>Otwory badawcze, pobieranie próbek gruntów i skał</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drogi:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autostrady projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>drogi inne projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>drogi modernizowane</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Koleje:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>rozbudowywane</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rurociągi i kanały zakryte</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linie energetyczne przesy-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>łowe</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanaly</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekty na trasie: mosty, wiadukty, przepusty</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekty obsługi:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) stacje obsługi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) stacje kolejowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) przepompownie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) budowle hydrotechniczne związaną z kanałami</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) stacje transformatorowe</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) budynki zaplecza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Złoża surowców budowlanych</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekty inżynierskie</td>
<td>Badania geologiczno-inżynierskie</td>
<td>Badania laboratoryjne</td>
<td>Badania polowe</td>
<td>Sonda wkręcana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robocie ziemne</td>
<td>Badanie gruntów i skal</td>
<td>Badania chemizmu wody</td>
<td>Sondowania dynamiczne</td>
<td>Sondowania statyczne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Drogi:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>autostrady projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>drogi inne projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>drogi modernizowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Koleje:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>projektowane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>rozbudowywane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rurociągi i kanaly zakryte</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Linie energetyczne przesyłowe</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kanały</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Obiekty na trasie: mosty, wiadukty, przepusty</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Obiekty obsługi:</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>a) stacje obsługi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b) stacje kolejowe</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c) przepompownie</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d) budowle hydrotechniczne związane z kanalami</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>e) stacje transformatorowe</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>f) budynki zaplecza</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Złoża surowców budowlanych</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Obiekty inżynierskie</td>
<td>Badania geologiczno-inżynierskie i geotechniczne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ścinanie obrotowe</td>
<td>Badania piezometryczne</td>
<td>Penetrometr kieszonkowy i młotek Schmidta</td>
<td>Badania filtracji</td>
<td>Próby obciążenia płytą</td>
<td>Badanie dylatometrem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Drogi:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autostrady projektowane</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drogi inne projektowane</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drogi modernizowane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koleje:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>projektowane</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rozbudowywane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rurociągi i kanały zakryte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linie energetyczne</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>przesyłowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanały</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekty na trasie: mosty, wiadukty, przepusty</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekty obsługi:</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) stacje obsługi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) stacje kolejowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) przepompownie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) budowle hydrotechniczne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>związane z kanałami</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) stacje transformatorowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) budynki zaplecza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Złoża surowców</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>budowlanych</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ — badanie podstawowe, (+) — badanie zalecane dla dużych inwestycji lub w trudnych warunkach; etapy badań: I — rozpoznawczy, II — szczegółowy (podstawowy), III — uzupelniający i kontrolny.
5.4.1. Zakres badań na etapie rozpoznawczym

Badania geologiczno-inżynierskie na tym etapie powinny dostarczyć informacji dotyczących:
— ogólnych zarysów budowy geologicznej, warunków hydrogeologicznych i własności fizyczno-mechanicznych podłoża obiektów liniowych,
— występowania na obszarze badań, lub w bezpośrednim sąsiedztwie procesów i form geodynamicznych (stopień aktywności procesów, obszar występowania, przebieg w czasie i przewidywane skutki),
— możliwości zaopatrzenia inwestycji w surowce naturalne.

Opracowanie tych zagadnień opiera się przede wszystkim na:
— materiałach archiwalnych (dokumentację geologiczno-inżynierską, hydrogeologiczną i surowcową, mapy geologiczne, topograficzne, mapy rejestracji osuwisk, literatura itp.),
— wstępnej i szczegółowej interpretacji zdjęć lotniczych,
— szczegółowym przeglądzie terenu,
— kontrolnych sondowaniach ręcznych do głębokości 3–6 m,
— kartowaniu wybranych obszarów (np. obszary osuwiskowe, torfowiska itp. oraz inne obszary intywnym działaniu procesów geodynamicznych),
— badaniach geofizycznych realizowanych w poszczególnych sytuacjach na kartowanych obszarach,
— wierceniach rozpoznawczych, które wykonuje się dla obiektów na trasie lub dla obiektów towarzyszących,
— stacjonarnych obserwacjach wód gruntowych w studniach i piezometrach w celu określenia wpływu kanału na otoczenie.

W skład dokumentacji wchodzą przede wszystkim mapy w skalach 1:5000–1:25 000: dokumentacyjna, występowania gruntów, szkic hydrogeologiczny, szkic występowania materiałów budowlanych, rejonizacja procesów geodynamicznych na mapie występowania gruntów lub odwrotnie, przekrój przez całą trasę lub jej część oraz tekst objaśniający.

5.4.2. Zakres badań na etapie szczegółowym

5.4.2.1. Drogi i linie kolejowe

Opracowanie przydatności podłoża dla tras drogowych i kolejowych opiera się na:
— przeglądzie terenu,
— analizie zdjęć lotniczych i kartowaniu geologiczno-inżynierskim,
— badaniach geofizycznych,
— robotach ziemnych i wiertniczych,
— badaniach laboratoryjnych i polowych.

Przegląd terenu, analizę zdjęć lotniczych i kartowanie wykonuje się na tym etapie jedynie w przypadku nie wykonania tych czynności na etapie badań rozpoznawczych lub w przypadku konieczności uzupełniania na pewnych odcinkach. Badania geofizyczne należy wykonać dla poszczególnych zadań w nawiązaniu do wiercien.

Lokalizując wyrobiska (szybiki, sondy ręczne, otwory wiertnicze) należy kierować się wytycznymi tabeli 32.
5.4.2.2. Rurociągi i kanały zakryte oraz odkryte

Opracowanie przydatności podłoża dla rurociągów i kanałów zakrytych oraz odkrytych obejmuje:
- przeglądanie terenu,
- badania geofizyczne,
- roboty ziemnych i wyrobisk,
- badania laboratoryjnych i polowych.

Należy dążyć do jednoetapowego rozpoznawania warunków geologicznych. Badania geofizyczne ograniczają się często do określenia stopnia agresywności podłoża. Odległość i głębokość wyrobiska podaje tabela 32.

W przypadku układania przewodów w wykopach ziemnych na głębokości większej niż 5,0 m pod powierzchnią terenu należy rozpoznać trasę, wykonując wiercenia po obu stronach trasy. Odległość otworów od osi trasy powinna się równać dwukrotnie przewidywanej głębokości wykopu.

<table>
<thead>
<tr>
<th>Warunki geologiczne</th>
<th>Największa odległość między wyrobiskami wzdłuż osi trasy (m)</th>
<th>Liczba otworów w przekroju poprzecznym do osi trasy *</th>
<th>Odległość między wyrobiskami w przekroju poprzecznym do osi trasy (m)</th>
<th>Głębokość otworu od powierzchni terenu, dna wykopu **</th>
<th>Głębokość wykopu lub wysokość nasypu (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proste</td>
<td>100–200</td>
<td>3</td>
<td>10–50</td>
<td>3</td>
<td>wykop nasyp do 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>nasyp 5–10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>nasyp > 10</td>
</tr>
<tr>
<td>Złożone i skomplikowane</td>
<td>50–100</td>
<td>co najmniej 3</td>
<td>10–30</td>
<td>4</td>
<td>wykop nasyp do 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>nasyp 5–10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>nasyp > 10</td>
</tr>
</tbody>
</table>

* W przypadku stwierdzania w wyrobiskach wykonanych w osi trasy lub podczas kartowania (pomiary biegu i upadu) utworów lub zjawisk wskazujących na możliwość powstania osuwisk (łby warowne, krakowieckie itp., zahamowanie glebkościowe, zawodzenie itp.) należy dodatkowo wykonać nizakładanie od strefy skomplikowania budowy geologicznej przekroje poprzeczne w celu sprawdzenia stateczności podłoża.

** Na obszarach o występowaniu gruntów słabo nośnych (torfy, namuły, kreda jeziorna itp.) głębokość otworów powinna być 2 m poniżej spaju tych utworów.

Tabela 32

Rozmieszczenie wierceni i ich głębokość w zależności od złożoności budowy podłoża

Na próbkach pobranych z wyrobisk należy wykonać badania standardowe, ze szczególnym uwzględnieniem wilgotności optymalnej i kalifornijskiego współczynnika nośności podłoża.

Podczas badań terenowych gruntów słabonośnych należy położyć nacisk na wyznaczenie stopnia zagęszczenia gruntów sypkich i konsystencji gruntów spoistych przy zastosowaniu odpowiednich sond.

W przypadku stwierdzania w wyrobiskach wykonanych w osi trasy lub podczas kartowania (pomiary biegu i upadu) utworów lub zjawisk wskazujących na możliwość powstania osuwisk (łby warowne, krakowieckie itp., zahamowanie glebkościowe, zawodzenie itp.) należy dodatkowo wykonać nizakładanie od strefy skomplikowania budowy geologicznej przekroje poprzeczne w celu sprawdzenia stateczności podłoża.
Odległość między otworami w celu udokumentowania obszarów bagien i torfowisk powinna wynosić 25–50 m.

W przypadku przejścia rurociągu przez wody powierzchniowe (płynące) oraz przez torfowiska, bagna itp., głębokość wyrobisk badawczych powinna wynosić 5 m poniżej dna rzeki lub spagu gruntów organicznych lub sięgać do poziomu uzgodnionego z biurem projektów.

Na obszarach górniczych głębokość wyrobisk powinna być większa od głębokości wykopu o 3 m.

Na odcinkach wymagających obniżenia zwierciadła wody gruntowej część wieńców powinna być głębsza, tak aby uzyskać dane do projektu odwodnienia.

Badania laboratoryjne ograniczają się w zasadzie do określania cech fizycznych gruntów, z oznaczeniem części organicznych i określeniem agresywności wody gruntowej i gruntów.

Badania polowe sondowaniami należy wykonywać w zasadzie tylko pod podpory rurociągów.

W przypadku projektowania kanałów, w których wody będą kontaktowały się z wodami gruntowymi, należy opracować prognozę wpływu kanału na otoczenie. Prognoza powinna obejmować:

— określenie charakterystycznych stanów wód gruntowych przed realizacją inwestycji w pasie przewidywanego wpływu,
— określenie miąższości warstwy przepuszczalnej, jej uziarnienia i parametrów filtracyjnych, a w miarę potrzeb jej rozprzestrzenienia,
— określenie głębokości i konfiguracji warstwy nieprzepuszczalnej,
— określenie wielkości i zasięgu wpływu na otoczenie (prognoza).

Współczynnik filtracji należy określić prostymi metodami polowymi (zalewanie i sczerpywanie).

5.4.2.3. Linie energetyczne

Badania określające przydatność podłoża wykonuje się tylko dla linii przesyłowych wysokiego napięcia i w zasadzie w jednym etapie.

Określenie przydatności podłoża następuje na podstawie:

— przeglądu terenu,
— analizy przebiegu linii na istniejących mapach geologicznych i topograficznych,
— wyrobisk,
— badań laboratoryjnych i polowych.

<table>
<thead>
<tr>
<th>Warunki geologiczne</th>
<th>Odległość między wyrobiskami wzdłuż trasy (m)</th>
<th>Głębokość wyrobiska poniżej poziomu ułożenia przewodu (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proste</td>
<td>100–300</td>
<td>1</td>
</tr>
<tr>
<td>Złożone i skomplikowane</td>
<td>50–100 lub pod podpory</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabela 33

Odległość i głębokość wyrobisk w zależności od złożoności budowy podłoża

165
Analizę przebiegu linii na istniejących mapach geologicznych i topograficznych wykonuje się dla ewentualnej korekty w celu ominięcia niekorzystnych obszarów (torfowiska, osuwiska itp.). Określenie przydatności podłoża pod konstrukcje maszty na obszarach o prostej budowie geologicznej następuje w wyniku przeglądu terenu i sondowań kontrolnych. W przypadkach wątpliwych i na gruntach słabonośnych należy wykonać szybki lub wiercenia w celu pobrania próbek oraz sondowania (sondowania dynamiczne i ściśnienie obrotowe). Badania laboratoryjne wykonuje się wyjątkowo w zakresie uzgodnionym z projektantem.

5.4.2.4. Obiekty na trasie

Badania określające przydatność podłoża wykonuje się dla obiektów inżynierskich na trasie w jednym lub dwu etapach. Badania dwuetapowe zalecane są przy:
— występowaniu skomplikowanych warunków geologicznych i terenowych oraz konieczności stosowania fundamentów głębokich,
— projektowaniu mostów i wiaduktów,
— opracowaniu kilku wariantów tras lub braku sprecyzowanej lokalizacji,
— trudności określenia sposobu posadowienia.

Określenie przydatności podłoża następuje na podstawie:
— przeglądu terenu,
— robót ziemnych i wiertniczych,
— badań laboratoryjnych i polowych.

Liczę wiercen badawczych i ich głębokość pod obiekty mostowe należy ustalić zgodnie z Instrukcją... (1998a).

Z badań laboratoryjnych można zrezygnować, gdy w podłożu występują grunty mineralne родzime sypkie, a rodzaj i stan gruntów są wystarczająco dokładnie rozpoznane badaniami makroскопowymi i sondowaniem. Dla gruntów spoistych należy szczególnie uwzględnić określenie wytrzymałości na ściśkanie jednoosiowe oraz określenie wilgotności naturalnej.

Badania polowe przeprowadzone sondowaniami oraz próbami obciążeniami należy wykonywać pod podpory oraz przyczółki mostu lub wiaduktu.

5.4.2.5. Obiekty obsługi

Określenie przydatności podłoża dla obiektów obsługi wykonuje się na podstawie:
— przeglądu terenu,
— badań geofizycznych,
— robót ziemnych i wiertniczych,
— badań laboratoryjnych i polowych.

Oprócz przeglądu terenu w wyjątkowych przypadkach (duże obiekty) można wykonać kartowanie geologiczno-inżynierskie.

Badania geofizyczne należy przeprowadzać również w przypadku dużych obiektów inżynierskich, stosując się do niniejszych wytycznych.
5.4.3. Zakres badań na etapie uzupełniającym

Zakres badań wykonany dla etapu szczegółowego powinien wyczerpywać wszystkie zagadnienia geologiczne potrzebne do projektowania.

Badania w etapie uzupełniającym wykonuje się tylko dla obszarów, na których nastąpiła zmiana trasy w wyniku badań szczegółowych lub z innych przyczyn, jak też w celu skontrolowania lub potwierdzania niedostatecznie poznanych problemów na poprzednim etapie.

6. SKŁADOWISKA

6.1. Wybór lokalizacji i badania podłoża składowisk

Badania te mają charakter dwufazowy. W pierwszej fazie powinny dotyczyć wyboru terenu lokalizacji składowiska, a w drugiej fazie, po wybraniu wariantu lokalizacji, określenia warunków geologiczno-inżynierskich podłoża do koncepcji i projektu budowlanego (Budowa..., 1993).

Przy wyborze lokalizacji, poza elementami wpływu składowiska na środowisko (biosfera, atmosfera, hydrosfera) oraz istniejącym i planowanym zagospodarowaniem przestrzennym terenu, a także obszarami prawnie chronionymi, w problematyce geologiczno-inżynierskiej należy uwzględnić:

— ukształtowanie powierzchni terenu,
— model budowy geologicznej z uwzględnieniem warstw izolujących i wodonośnych, ich wiek, litogenezę i tektonikę opartą na danych archiwalnych i literaturze,
— hydrochemię i dynamikę wód podziemnych, zaopatrzenie w wodę, istniejące zagrożenia jakości wód podziemnych,
— czynne procesy geologiczne.

Algorytm wyboru lokalizacji składowiska podano na rysunku 15.

W fazie dokumentowania warunków geologiczno-inżynierskich dla konkretnie wybranej lokalizacji (koncepcja projektowo-przestrzenna i projekt budowlany), poza szczegółowaniem opisanych elementów, konieczne będzie dokładne rozpoznanie:

— Warunków hydrogeologicznych ze szczególnym uwzględnieniem właściwości izolacyjnych gruntów podłoża składowiska i występujących w jego otoczeniu.
— Przy ocenie właściwości izolacyjnych, poza filtracyjnym przemieszczaniem się ewentualnych zanieczyszczeń, powinny być uwzględnione sorpcyjne i desorpcyjne właściwości gruntów.
— Właściwości fizyczno-mechanicznych gruntów podłoża składowiska i jego otoczenia, a przede wszystkim powinny być ocenione: odkształcalność podłoża i jego podatność na wypieranie, ciśnienie wody porowej. W badaniach powinna być również uwzględniona problematyka materiałów do budowy obwałowań, mineralnych warstw izolacyjnych, drenaży itp.
Obszary perspektywiczne ze względu na budowę geologiczną i geomorfologiczną

<table>
<thead>
<tr>
<th>Procedury</th>
<th>Kryteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analiza materiałów archiwalnych: mapy geologiczne, mapy hydrogeologiczne, mapy geologiczno-gospodarcze</td>
<td>Położenie w stosunku do stref prawnie chronionych</td>
</tr>
<tr>
<td>Wykorzystanie materiałów z baz danych</td>
<td>Związek zgeologiczny</td>
</tr>
</tbody>
</table>

Położenie w stosunku do surowcowych między innymi:
- Wysokość
- Znaczenie dla krajobrazu
- Położenie w stosunku doerek i zlewni
- Stany wód

Lokalizacja w wyrobiskach poeksplatacyjnych

<table>
<thead>
<tr>
<th>Procedury</th>
<th>Kryteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analiza materiałów geologicznych i surowcowych</td>
<td>Położenie w stosunku do stref prawnie chronionych</td>
</tr>
<tr>
<td>Znaczenie dla krajobrazu</td>
<td>Wymiar i pojemność wyrobiska</td>
</tr>
<tr>
<td>Rejestracja wyrobisk</td>
<td>Zgeologiczny</td>
</tr>
<tr>
<td>Syropodanie kart wyrobisk</td>
<td>Pokrywa geologiczna i hydrogeologiczna</td>
</tr>
<tr>
<td>Klasyfikacja wyrobisk ze względu na możliwość składowania określonych odpadów</td>
<td>Uwarunkowania geologiczne</td>
</tr>
<tr>
<td>Inne obszary, o niekorzystnych warunkach geologicznych, na których lokowanie składowisk będzie wymagać specjalnych rozwiązań technicznych</td>
<td></td>
</tr>
</tbody>
</table>

Lokalizacja w strefach istniejących składowisk

<table>
<thead>
<tr>
<th>Procedury</th>
<th>Kryteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analiza materiałów archiwalnych geologicznych i hydrogeologicznych</td>
<td>Położenie w stosunku do stref prawnie chronionych</td>
</tr>
<tr>
<td>Analiza warunków i technologii składowania</td>
<td>Wymiar i pojemność składowiska</td>
</tr>
<tr>
<td>Rejestracja składowiska</td>
<td>Warunki geologiczne i hydrogeologiczne</td>
</tr>
<tr>
<td>Wstępna (ogólna) ocena oddziaływania składowiska na środowisko</td>
<td>Uwarunkowania geologiczne</td>
</tr>
<tr>
<td>Inne obszary, na których lokowanie składowisk będzie wymagać specjalnych rozwiązań technicznych</td>
<td></td>
</tr>
</tbody>
</table>

Lokalizacja w obszarze terenów zdegradowanych (działalność przemysłowo-składowa, zaśmiecenia itp.)

<table>
<thead>
<tr>
<th>Procedury</th>
<th>Kryteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analiza materiałów archiwalnych: geologicznych, hydrogeologicznych, planów przestrzennego zagospodarowania</td>
<td>Położenie w stosunku do stref prawnie chronionych</td>
</tr>
<tr>
<td>Wizja lokalna terenu</td>
<td>Powierzchnia obszaru zdegradowanego</td>
</tr>
<tr>
<td>Inne obszary, na których lokowanie składów będzie wymagało specjalnych rozwiązań technicznych</td>
<td></td>
</tr>
</tbody>
</table>

Rys. 15. Algorytm wyboru lokalizacji składowisk
Przy dokumentowaniu warunków geologiczno-inżynierskich, ze względu na charakter obiektu, należy wykonać mapę geologiczno-inżynierską podłoża i przedpola składowiska, w przypadku składowisk mokrych szczególnie podłoża obwałowań.

Dokumentacja nie może mieć charakteru dokumentacji uproszczonej. W opracowaniu takim należy podać prognozę wpływu składowiska na środowisko i określić kierunki rekultywacji.

Formowanie składowiska, zastosowane technologie składowania i geometria składowiska powinny być dostosowane do kierunków rekultywacji i zagospodarowania.

W ramach dokumentowania warunków geologiczno-inżynierskich powinny być wykonane piezometry, przeprowadzone badania tła hydrochemicznego istotne przy dalszych ocenach oddziaływania inwestycji na środowisko.

Rozpatrzono problemy dotyczące zagadnień związków z procesem inwestycyjnym — projektowaniem i budową.

6.2. Badania geologiczno-inżynierskie w celu oceny oddziaływania istniejących składowisk na środowisko

Badania geologiczno-inżynierskie mogą być związane z projektowaniem, rejestracją istniejących czynnych lub zrekultywowanych składowisk oraz badaniami dla składowisk, które zgodnie z zaleceniami odnośnie jednostek organizacyjnych, w tym Wojewódzkich Wydziałów Ochrony Środowiska i Wojewódzkich Inspektorów Ochrony Środowiska, mogą podlegać określonej lub długotrwałej ocenie oddziaływania na środowisko, opartej głównie na monitoringu wód podziemnych i gruntów w rejonie składowiska.

Przy rejestracji składowisk, jak również przy ocenie oddziaływania na środowisko należy szczególnie uwzględniać:

— warunki geologiczne, hydrogeologiczne, geologiczno-inżynierskie podłoża,
— zastosowane systemy izolacji i drenażu,
— technologię składowania i przyrostu materiału w czasie,
— stan zachowania gruntów antropogenicznych na składowisku,
— czynne procesy geodynamiczne zachodzące w materiale składowanym i w podłożu,
— prognozę oddziaływania składowiska na środowisko geologiczne,
— geotechniczne możliwości przeciwdziałania skutkom ujemnego oddziaływania składowiska na środowisko,
— oszacowanie możliwości gospodarczego wykorzystania materiału składowanego.

W przypadku występowania na rozpatrywanym terenie więcej niż jednego poziomu wód podziemnych, celowe jest wykonanie odrębnych piezometrów dla każdej warstwy wodonośnej. Jest to szczególnie ważne w przypadku monitorowania składowisk odpadów niebezpiecznych. Założenie piezometrów wielopoziomowych z tzw. pakerami może spowodować zanieczyszczenie głębiej położonych poziomów wodonośnych.

6.3. Etapy projektowania składowisk

W drugim etapie, gdy jest znana głębokość wykopów, należy dokonać rozpoznania uzupełniającego. Wiercenia należy projektować z uwzględnieniem zmienności podatności podłoża. Należy zakładać siatkę otworów około 50 x 50 m, w skomplikowanych warunkach geologicznych, zmienne poziomy wód itp. Trzeci etap rozpoznania to badania szczegółowe dotyczące segregacji materiałów na nasypy itp. Siatka otworów w trzecim etapie może dochodzić do 25 x 25 m.

6.4. Projektowanie badań

Przygotowanie projektu prac geologicznych w celu rozpoznania podłoża pod składowisko powinno uwzględniać następujące problemy:

- rodzaj, właściwości i ilość odpadów,
- fazę dokumentowania (wybór lokalizacji, wstępne rozpoznanie terenu do projektu technicznego, do projektu wykonawcowo-budowlanego),
- typ składowiska (nadpoziomowe, podpoziomowe, przyskarpowe),
ogólne dane o projektowanym składowisku.

Rozpoznanie projektowe składowiska w znacznym stopniu zależy od budowy geologicznej i warunków hydrogeologicznych terenu.

Badania geologiczno-inżynierskie podłoża składowiska powinny obejmować:
— rozpoznanie układu warstw, szczególnie określenie rozprzestrzenienia i miąższości warstw słabo przepuszczalnych (bariera geologiczna),
— warunków hydrogeologicznych, w tym dokładną charakterystykę pierwszego poziomu wód gruntowych,
— określenie rodzajów gruntów i skał oraz ich właściwości,
— wstępną ocenę występujących materiałów pod kątem ich przydatności do budowy składowiska.

Do opracowania koncepcji składowiska mogą być przydatne badania geofizyczne, przede wszystkim pomiary geoelektryczne oraz sejsmiczne (sejsmika inżynierska). Pozwalają one na większym obszarze niż samo składowisko ocenić właściwości izolacyjne terenu.

Otwory badawcze należy projektować z uwzględnieniem zasięgu oddziaływania obiektu w głębi. Gładkość otworu powinna wynosić minimum 6 m poniżej projektowanego dna składowiska. Do opracowania koncepcji należy wykonać co najmniej 1 otwór na 1 ha, a do projektu technicznego 3–4 otwory na 1 ha. Ogólnie można określić, że głębokość otworów powinna umożliwiać rozpoznanie występowania poziomu wód gruntowych. Określenia wymaga kierunku przepływu wód gruntowych, w niektórych przypadkach prędkość przepływu i skład hydrochemiczny wód gruntowych. W rozpoznaniu podłoża oprócz otworów są przydatne sondowania dynamiczne i statyczne oraz wykopy badawcze. Badania geofizyczne należy projektować wspólnie z wykonawcą tych prac. Pozwoli to na wybranie optymalnej metody rozpoznania podłoża konkretnej lokalizacji składowiska.

6.5. Bariera geologiczna

Najnowsze badania wskazują na istotną rolę bariery geologicznej w przypadku składowisk odpadów szczególnie niebezpiecznych.

Głównym zadaniem barier inżynierskich jest bieżące utrzymanie bezpieczeństwa. W dłuższej perspektywie funkcje bezpieczeństwa powinna spełniać odpowiednia bariera geologiczna. Dlatego w rozważaniach dotyczących bezpieczeństwa składowania odpadów niebezpiecznych przyjmuje się, że bariera geologiczna jest jedną z podstawowych w systemie wielu barier (ang. multi-barrier) stosowanych w składowisku.

Bariera geologiczna powinna mieć następujące cechy:
— małą przepuszczalność (poniżej \(1 \cdot 10^{-7}\) m/s),
— dużą miąższość i jednorodność,
— znaczne rozprzestrzenienie,
— dużą pojemność sorpcyjną warstw,
— małą chemiczną rozpuszczalność,
— małą podatność na procesy erozyjne.

Takie cechy jak mała przepuszczalność w połączeniu z dużą miąższością i jednorodnością będą zapewniały ograniczenie występowania uprawilegowanych poziomych dróg przepływu.
wód podziemnych, a tym samym transportu zanieczyszczeń. Umożliwia to również pełne wykorzystanie właściwości sorpcyjnych warstwy jako przepuszczalnej.

Ocenę bariery geologicznej można przeprowadzić po wykonaniu szczegółowych badań określających jej parametry i po przeprowadzeniu analiz, łącznie z modelowaniem matematycznym.

Bariera geologiczna powinna stanowić naturalną barierę chroniącą wody podziemne przed zanieczyszczeniem. Council… (1999) określa miąższość i przepuszczalność warstwy w zależności od rodzaju składanych odpadów. Są one następujące:

- składowisko odpadów niebezpiecznych, \(k \leq 1,0 \cdot 10^{-9} \text{ m/s} \), miąższość \(\geq 5 \text{ m} \),
- składowisko odpadów bezpiecznych, \(k \leq 1,0 \cdot 10^{-8} \text{ m/s} \), miąższość \(\geq 1 \text{ m} \),
- składowisko odpadów stałych, \(k \leq 1,0 \cdot 10^{-7} \text{ m/s} \), miąższość \(\geq 1 \text{ m} \).

Przepisy niemieckie dopuszczają przepuszczalność \(k \leq 1,0 \cdot 10^{-6} \text{ m/s} \) i miąższość warstwy kilka metrów. Znaczna miąższość warstwy jest bardzo ważna ze względu na niejednorodność gruntów ją tworzących, co umożliwia powstawanie dróg migracji wody i zanieczyszczeń.

6.6. Obiekty likwidujące zagrożenia środowiska

Do takich obiektów należą składowiska odpadów, oczyszczalnie ścieków, różne obiekty służące ochronie wód podziemnych i powierzchniowych. Każdy projektowany obiekt budowlany musi być tak zaprojektowany i eksploatowany, by co najmniej nie wprowadzać zagrożeń do środowiska, a wiele obiektów powinno służyć poprawie jakości środowiska (cofać niekorzystne wpływy).

Główne zadania to ochrona wód podziemnych i powierzchniowych przed zanieczyszczeniami. Projektowane obiekty nie powinny zakłócać istniejących związków hydraulicznych między wodami, nie powinny prowadzić do łączenia zwierciadeł różnych poziomów wód itp. Często przy dokumentowaniu geologiczno-inżynierskim należy uwzględniać te aspekty i wykonywać rozpoznanie na większym terenie niż teren bezpośredniej inwestycji, a także dokonywać rozpoznania głębiej niż to by wynikało jedynie ze stref mechanicznego oddziaływania obiektu na podłoże.

Główne źródła zanieczyszczeń wód stanowią:

- odprowadzenia ścieków komunalnych (z miast i wsi) i przemysłowych (poprodukcyjne),
- odprowadzenia wód pochłonniczych z energetyki i przemysłu,
- odprowadzenia wód kopalnianych,
- spływy powierzchniowe z terenów użytkowanych rolniczo,
- spływy z terenów przemysłowych oraz składowisk odpadów przemysłowych i komunalnych,
- zrzuty niezorganizowane ze źródeł lokalnych (bez kanalizacji), zanieczyszczenia atmosferyczne.

Każe ze źródeł zanieczyszczeń wód ma swoją specyfikę charakteru odprowadzanych substancji, a także wywiera określony wpływ na zagrożenia powstające w poszczególnych częściach hydrofery. Często, zwłaszcza w miastach, ścieki z różnych źródeł punktowych są podłączone do systemów kanalizacji ogólnospawnym. Rzadziej buduje się systemy kanalizacji rozdzielczej, z odrębnym odprowadzaniem ścieków przemysłowych, komunalnych i opadowych.
7. ZAGOSPODAROWANIE PRZESTRZENNE

W celu prawidłowego i racjonalnego zagospodarowania obszarów inwestycyjnych, związanych z rozbudową miast i ich aglomeracji, jak i z rejonami nowo odkrytych złoż i nowych obszarów przemysłowych, przed opracowaniem planów zagospodarowania przestrzennego powinny być rozpoznane warunki geologiczne i określona prognoza oddziaływania inwestycji na środowisko.

Takie działania powinny określać i zasygnałować ewentualne niekorzystne skutki, jakie mogłyby spowodować projektowane inwestycje w środowisku. Znajomość problematyki geologiczno-inżynierskiej i odpowiednie informacje są potrzebne przy wydawaniu decyzji o warunkach zabudowy i zagospodarowania terenu (Ustawa o zagospodarowaniu przestrzennym, 1994, Dz. U. nr 15 poz. 139) oraz do wydawania decyzji o pozwoleniu na budowę (Ustawa Prawo Budowlane, 1994, Dz. U. nr 89 poz. 414).

Warunki geologiczno-inżynierskie dla celów zagospodarowania przestrzennego przedstawia się przede wszystkim w formie opracowań kartograficznych. Zależy od potrzeb należy odpowiednio dobrac zakres rozpoznania, jak i dokładność map.

Wykonywanie opracowań geologiczno-inżynierskich na potrzeby zagospodarowania przestrzennego wynika z ustawy o prawie geologicznym i górniczym oraz pośrednio z ustawy o prawie budowlanym i ustawy o zagospodarowaniu przestrzennym.

W ustawie o zagospodarowaniu przestrzennym podaje się, że ustalenie przeznaczenia i zasad zagospodarowania terenu jest dokonywane w miejscowym planie zagospodarowania przestrzennego. Wskazuje się również na formę określoną jako: Studium uwarunkowania i kierunków zagospodarowania przestrzennego gminy, jak również na opracowanie o charakterze regionalnym: Studium zagospodarowania przestrzennego województwa.

W ustawie tej wielokrotnie wskazuje się na potrzebę uwzględniania w tych planach i studiach wymagań ochrony środowiska, stanu i funkcjonowania środowiska przyrodniczego, uwzględniania obszarów, które mogą być przeznaczone pod zabudowę, ustalenia w zależności od potrzeb szczególnych warunków zagospodarowania terenu, w tym zakazu zabudowy wynikającego z potrzeb ochrony środowiska, przekształceń obszarów zdegradowanych. Do miejscowych planów zagospodarowania przestrzennego (zgodnie z ustawą) powinny być dołączone prognozy skutków wpływu ustaleń planu na środowisko przyrodnicze.

W ustawie ani w odnośnie rozporządzeniach nie precyzuje się, w jakim zakresie elementy środowiska geologicznego powinny być dokumentowane i uwzględniane przy opracowywaniu planów miejscowych, czy też regionalnych. Istnieje pilna potrzeba, aby wymogi środowiska geologicznego wyrażone w formie waloryzacji geologiczno-inżynierskiej były uwzględniane w zagospodarowaniu terenu i to w sposób ścisłe określony w wyniku odrębnych przepisów prawnych.

Wieloletnie doświadczenia wskazują, że brak rozporządzeń w tym zakresie powoduje, że miejscowe plany czy też opracowania regionalne są wykonywane bez, lub przy minimalnym uwzględnianiu warunków geologiczno-inżynierskich środowiska tak w odniesieniu do ocen i waloryzacji podłoża budowlanego, jak i warunków hydrogeologicznych zaopatrzenia w wodę, możliwości zaopatrzenia w surowce budowlane.

Dotychczas warunki geologiczno-inżynierskie dla celów planowania przestrzennego były przedstawiane w formie:
— szkiców warunków geologiczno-inżynierskich jako załączniki do poszczególnych arkuszy szczegółowych map geologicznych Polski w skali 1:50 000,
— atlasów geologiczno-inżynierskich w skali 1:25 000 i większych dla dużych i średnich miast w Polsce,
— innych opracowań kartograficznych, nieseryjnych, geologiczno-inżynierskich lub takich, gdzie treści geologiczno-inżynierskie stanowiły istotny element tych opracowań, a więc takie jak: mapy ekologiczne, fizjograficzne, przekształceń powierzchni terenu, geosozologiczne oraz specjalne wykonywane w różnych skalach i na różne potrzeby.

Od kilku lat zaprzestano wykonywania szkiców geologiczno-inżynierskich. Ze względu na skale i generalizację przedstawianych treści były one nieprzydatne do planowania i sporządzania miejscowych planów zagospodarowania, w bardzo ograniczonym zakresie mogły być wykorzystane do sporządzania planów regionalnych.

7.1. Mapy geologiczno-gospodarcze

W ostatnich latach rozpoczęto (w ramach opracowywania arkuszy Mapy geologiczno-gospodarczej Polski w skali 1:50 000) przedstawiać warunki podłoża budowlanego i warunki geologiczno-inżynierskie panujące na obszarach przewidzianych do urbanizacji. Są to obszary, dla których są lub będą wykonywane szczegółowe plany zagospodarowania przestrzennego.

W Instrukcji... (1997) opracowanej przez Państwowy Instytut Geologiczny wyróżniono dwie kategorie obszarów:
— obszary o warunkach korzystnych dla budownictwa,
— obszary o warunkach niekorzystnych dla budownictwa.

Według instrukcji warunków geologiczno-inżynierskich nie określa się dla obszarów prawne chronionych, terenów leśnych, stref ochronnych wód powierzchniowych i podziemnych, występowania złóż kopalin.

Przyjęte kryteria pozwalają jedynie na ogólną charakterystykę terenów przeznaczonych pod budownictwo. Nie mogą stanowić podstawy do sporządzania miejscowych planów zagospodarowania przestrzennego.

Niezależnie od arkuszy map geologiczno-gospodarczych, wydawanych ze środków budżetowych, zgodnie z dokumentem pt. Założenia polityki resortu w dziedzinie geologii inżynierskiej, przyjętym przez kierownictwo Ministerstwa Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa w dniu 13.11.1996 r., przewiduje się opracowywanie w dalszym ciągu atlasów geologiczno-inżynierskich oraz map geologiczno-inżynierskich dla celów planowania przestrzennego w gminach.
7.2. Atlasy geologiczno-inżynierskie miast

Opracowywanie atlasów geologiczno-inżynierskich w skali 1:25 000 i większych dla miast oraz ośrodków przemysłowych i górnictwych o liczbie mieszkańców powyżej 100 000 jest zgodne z tendencjami światowymi.

Współcześnie atlasy geologiczno-inżynierskie, w odróżnieniu od dotychczasowo wykonywanych, powinny być realizowane metodami GIS. System ten umożliwia gromadzenie danych, ich przetwarzanie, drukowanie w skali zależnej od potrzeb oraz ciągłą aktualizację informacji o danym terenie. Instrukcji dotyczącej opracowania atlasów w tym systemie jeszcze nie ma, ale jest przygotowywana na przykładzie realizacji atlasu geologiczno-inżynierskiego Warszawy w skali 1:10 000.

Niezależnie od systemu gromadzenia danych i przedstawiania wyników badań prace nad atlasem powinny doprowadzić do stworzenia przestrzennego modelu warunków geologiczno-inżynierskich. Model taki powinien umożliwić wyciągnięcie wniosków dotyczących ilościowej oceny istotnych dla budownictwa elementów środowiska geologicznego, a przede wszystkim:

— nośności gruntów podłoża,
— występowania poziomów wodonośnych, wahań zwierciadła wody podziemnej, hydrochemii,
— wpływu czynnych procesów geodynamicznych na budowlę,
— wpływu ukształtowania powierzchni,
— przekształceń antropogenicznych środowiska geologicznego,
— prognoz dotyczących wzajemnych oddziaływań budowla–środowisko geologiczne.

Mapa warunków geologiczno-inżynierskich oraz mapy rejencji i waloryzacji tych warunków stanowić powinny syntezę poszczególnych elementów środowiska geologicznego, przedstawionych w atlasach w postaci map analitycznych i przekrojów:

1) mapy dokumentacyjnej z bazą danych,
2) mapy geomorfologicznej,
3) mapyhydrogeologicznej,
4) mapy gruntów budowlanych na różnych głębokościach zależnie od programowanej zabudowy,
5) mapy prognoz zmian środowiska,
6) przekrojów geologicznych,
7) przekrojów geologiczno-inżynierskich,
8) mapy sozologicznej,
9) map problemowych, np. dotyczącej stateczności zboczy.

7.3. Mapy geologiczno-inżynierskie dla celów planowania przestrzennego w gminach

Kierunki rozwoju poszczególnych gmin powinny nawiązywać do programów regionalnych, a także uwzględniać własne, naturalne zasoby odnawialne i nieodnawialne. Rozwiązywanie poszczególnych problemów rozwoju gmin musi więc być rozpatrywane na szerszym tle uwarunkowań zewnętrznych, a w tym konieczne jest posiadanie niezbędnego zasobu informacji. Z doświadczeń krajów zachodnich wynika, że celowe jest przygotowanie i wprowadzenie do praktyki tzw. tematycznego systemu informacji regionalnej (TSIR). System ten składa się z kil-
ku modulek. Na potrzeby gminy należy przyjąć jako najwłaściwsze moduły zarządzania, infrastruktury, geologiczno-inżynierski, wód powierzchniowych i atmosfery.

Wprowadzenie do gmin TSIR-u, przy wykorzystaniu systemów informacji geograficznej (GIS), pozwoli na szybkie przygotowanie opracowań studialnych, wykonywanie projektów wstępnych i szczegółowych, planów zagospodarowania oraz przeprowadzenie prac inwentaryzacyjnych.

W polityce resortu w dziedzinie geologii inżynierskiej założono, że koszty przy sporządzaniu planów w głównej mierze pokryją gminy. Obecnie na zlecenie Ministerstwa Środowiska została opracowana przez Państwowy Instytut Geologiczny instrukcja sporządzania map warunków geologiczno-inżynierskich w skali 1:10 000 i większej na potrzeby planowania przestrzennego w gminach. Instrukcja ta powstała na podstawie pilotowych opracowań map warunków geologiczno-inżynierskich na potrzeby planowania przestrzennego w gminach: Jabłonna k. Warszawy, Kazimierz nad Wisłą i Miłki k. Giżycka.

Zbierane doświadczenia, jak również analiza programu systemu informacyjnego opracowanego dla zachodnich euroregionów, pozwalają na sprecyzowanie zakresu prac dokumentacyjnych i sposobu przedstawiania danych.

Kartografia komputerowa w układzie GIS ma wiele zalet, z których najważniejsze są:
— możliwość wprowadzenia informacji dotychczas zebranych i nowych w formie punktów, linii i powierzchni, pod którymi w banku danych są zakodowane dalsze informacje szczegółowe,
— trwałość, dokładność i pewność przechowywania danych,
— prosty sposób aktualizacji i nowelizacji danych,
— ujednolicenie zapisu i obróbki danych,
— łatwość przekształcenia na inne układy map topograficznych i łatwość włączania danych ze zdjęć satelitarnych,
— powtarzalne i jednoznaczne odtworzenie danych, jak i dowolne rozszerzenie banku danych,
— łatwość adaptacji istniejących planów, map itp., bez konieczności sporządzania całego planu od początku, co jest konieczne przy stosowaniu dotychczasowych technik,
— szybkość przetwarzania i dostępu do informacji,
— dostępność i łatwość wydruku komputerowo redagowanych map,
— możliwość badań wzajemnej korelacji między poszczególnymi cechami środowiska i dokonywania obliczeń statystycznych, analiz trendów oraz wskazywania obszarów o optymalnych parametrach do wykonywania określonego zadania,
— dowolność skali (dane w bazie mogą być przedstawiane w dowolnej skali) zależnie od potrzeb.

Mapa warunków geologiczno-inżynierskich, według Instrukcji... (1999), zwana dalej MWGI, stanowi zbiór cyfrowych map tematycznych i syntetycznych opracowanych w systemie GIS na potrzeby planowania przestrzennego w gminach. Mapa jest opracowywana w systemie modularnym. Składa się z modułu geologiczno-inżynierskiego i z modułów: zarządzania, infrastruktury, socjologicznego, wód powierzchniowych i atmosfery.

Mapa w systemie komputerowym powstaje w wyniku nakładania tematów informacyjnych. Najczęściej są to mapy monotematyczne, w których na cyfrowy podkład topograficzny użytkownik nakłada żadaną treść, np. występowanie gruntów w podłożu budowlanym, lub hydrozipsy wód podziemnych.

W myśl założeń Instrukcji... (1999) celem opracowania mapy warunków geologiczno-inżynierskich jest przedstawienie na podkładzie topograficznym istotnych dla obszaru gminy zagadnień:
— określenie przydatności terenu dla budownictwa,
— dostarczenie gminom dla celów decyzyjnych i planowania zagospodarowania powierzchni terenu i kształtowania lub ochrony środowiska człowieka w formie cyfrowych map, przekroczeń, zestawień i opisów,
— dokonanie analizy ewentualnych szkód budowlanych na tle budowy geologicznej i opracowania praktycznych wniosków,
— przedstawienie i opisanie wpływu naturalnych i sztucznych procesów geodynamicznych na warunki budowlane,
— wskazanie i opisanie wszystkich innych czynników geologicznych wpływających lub mogących ujemnie wpłynąć na budowlaną działalność,
— wskazanie głównych problemów budowlanych, które należy rozwiązywać szczegółowymi badaniami geologiczno-inżynierskimi podczas dokumentowania projektowania większych obiektów inwestycyjnych,
— możliwość zaopatrzenia gminy w wodę i lokalne złoża surowców mineralnych.
Mapę warunków geologiczno-inżynierskich należy opracowywać na podstawie istniejących materiałów geologicznych archiwalnych, wyników obserwacji i badań terenowych, a w szczególności:
— archiwalnych wierć, dokumentacji geologicznych, technicznych badań podłoża i map w różnych skalach,
— zdjęć lotniczych i satelitarnych (opcja),
— przeglądu terenu,
— obserwacji procesów geologicznych (erozja, abrazja, akumulacja, ruchy mas skalnych, sufozja, zapadanie w lessach itp.),
— pomiarów przejawów wodnych powierzchniowych i poziomów wód podziemnych ze specjalnym uwzględnieniem pierwszego poziomu wody gruntowej,
— wywiadów w terenie dotyczących zasięgu wód powodziowych, maksymalnego stanu wód gruntowych, przyczyn uszkodzenia obiektów budowlanych oraz przebiegu naturalnych i sztucznie wywołanych procesów geodynamicznych,
— banku danych HYDRO, banku danych OCHRONA PRZYRODY (dane i informacje znajdują się w archiwach Państwowego Instytutu Geologicznego, urzędów wojewódzkich, gminnych, wojewódzkich inspektoratach ochrony środowiska).
Na podstawie analizy wszystkich dostępnych materiałów archiwalnych i publikacji dotyczących obszaru gminy należy:
— ustalić główne problemy geologiczne decydujące o warunkach budowlanych,
— określić zakres zmienności cech geotechnicznych i ich zgodności z wartościami przeciwnymi,
— wstępnie wyznaczyć obszary działania procesów geodynamicznych,
— ustalić zagadnienia mające istotne znaczenie dla budownictwa, wymagające dodatkowych obserwacji w trakcie uzupełniających prac geologicznych,
— wstępnie ustalić sposób przedstawiania treści poszczególnych modułów i warstw informacyjnych.
Według Instrukcji... (1999) dokładność mapy zależy od gęstości punktów dokumentacyjnych, wyrażonej ich liczbą przypadającą na 1 km² zależnie od stopnia złożoności treści mapy. Ogólnie na potrzeby planowania przestrzennego w gminach na 1 km² należy wykonać 3–30 punktów dokumentacyjnych. Na szczególnie podkreślone zasługuje fakt, że w treści map szeroko uwzględniono moduł infrastruktury i moduł geosozologiczny, co pozwala na kompleksowe
przedstawienie danych istotnych do sporządzania planu zagospodarowania przestrzennego gminy.

W celu ułatwienia zbierania i porządkowania danych opracowano: Ramowy projekt bazy danych geologiczno-inżynierskich dla gminy. Instrukcja zakłada, że wszystkie dane topograficzne, urbanistyczno-planistyczne, geologiczne i sozologiczne w różnym czasie i zakresie będą musiały być aktualizowane. Każdy rodzaj danych powinien być aktualizowany przez wyspecjalizowane, odpowiednie firmy lub służby.

Zaprezentowana instrukcja stanowi podstawę i ujednolica metodykę prac sporządzania cyfrowych map warunków geologiczno-inżynierskich dla gmin. Opracowywanie takich map powinno przyczynić się do tworzenia miejscowych planów zagospodarowania, przy wykorzystaniu możliwości środowiska i jego zasobów. Wykonywanie map na większą skalę będzie możliwe po wprowadzeniu w życie odnośnych przepisów prawnych i poprzez unifikację metod sporządzania tego typu map powodującą obniżenie kosztów ich wykonania. Zgodnie z założeniami polityki Ministerstwa Środowiska ciężar wykonania map będzie przede wszystkim spoczywał na gminach. Przyjęty system odwzorowań map, skala i dokładność rozpoznania stanowi gwarancję, że ten typ opracowań geologiczno-inżynierskich dla gmin spełni swoją rolę i będzie rozwiązaniem optymalnym.

Omówione sposoby i metody przedstawiania warunków geologiczno-inżynierskich w postaci:
— map geologiczno-inżynierskich dla gmin,
— atlasów geologiczno-inżynierskich dla miast powyżej 100 tys. mieszkańców,
— warunków podłoża budowlanego w Mapie geologiczno-gospodarczej Polski w skali 1:50 000,

stanowią istotny element rozpoznania środowiska pozwalający na opracowanie z różną dokładnością miejscowych planów zagospodarowania przestrzennego, regionalnych planów zagospodarowania przestrzennego, wszelkiego rodzaju studiów, a także mogą służyć do wydawania decyzji o warunkach zabudowy i zagospodarowania terenu oraz do wydawania decyzji o pozwoleniu na budowę.

Należy jednak stworzyć podstawy prawne do wykonywania map warunków geologiczno-inżynierskich i atlasów, a dla wszystkich podstawy prawne warunków ich wykorzystania.
LITERATURA

GRABOWSKA-OLSZEWSKA B., 1996 — Zmodyfikowany nomogram Casagrande’a i jego zastosowanie do oceny plastyczności i pęcznienia gruntów spoistych. Inż. i Bud. 2.

NORMY I INSTRUKCJE

BS 5930, 1981 — British standard code of practise for site investigation.
PN–86/B–02480. Grunty budowlane, określenia, symbole, podział i opis gruntów.
PN–88/C–04632/03. Ogólne zasady pobierania prób do badań fizycznych, chemicznych i bakteriologicznych. Technika pobierania prób.
pr ENV 1997-2. Geotechnical design. Part 2: Design assisted by laboratory testing.