Geomechanika – element projektowania podziemnych magazynów i składowisk odpadów

1. Kilka słów o podziemnym magazynowaniu

Podziemne magazynowanie

Bezzbiornikowe magazynowanie niektórych gazów, ropy naftowej i jej produktów oraz sporadycznie innych substancji w specjalnie wykonanych kawernach komorach, podziemnych wyrobiskach poeksploatacyjnych oraz porowatych strukturach skalnych

Podziemne magazynowanie – element inżynierii środowiska

W chwili obecnej podziemne magazynowanie stanowi bardzo istotny element inżynierii środowiska szeroko rozpowszechniony w wielu rozwiniętych krajach świata

Infrastruktura naziemna podziemnego magazynu gazu (PMG)

Uzasadnienie celowości podziemnego magazynowania

- konieczność tworzenia odpowiednio dużych rezerw magazynowych surowców, głównie o znaczeniu strategicznym dla zapewnienia ciągłości funkcjonowania gospodarki kraju,
- wyeliminowanie lub ograniczenie zagrożenia dla ludzi oraz niebezpieczeństwa i uciążliwości dla środowiska naturalnego wywołanego magazyno-waniem naziemnym,
- względy ekonomiczne magazynowanie naziemne jest bardziej kosztowne, a surowe normy bezpieczeństwa powodują nieustanny wzrost kosztów ich budowy i utrzymania.

Substancje magazynowane w podziemnych magazynach

ropę i paliwa.

Rodzaje magazynów podziemnych

Udział poszczególnych typów magazynów w łącznej pojemności czynnej magazynów na świecie

Rozmieszczenie podziemnych magazynów gazu (PMG) na świecie (Reinisch, 2000)

Kontynent	Sczerpane złoża węglowodorów	Warstwy wodonośne	Kawerny solne	Opuszczone kopalnie	Razem
Ameryka Północna	351	47	25	1	424
Europa Zachodnia	22	22	16	2	62
Europa Wschodnia	51	14	2	-	67
Australia	1	-	-	-	1
Razem	425	83	43	3	554

Podziemne magazyny w Polsce

<u>Stan obecny</u> – 6 magazynów gazu (PMG) 1 magazyn ropy i paliw (Magazyn Góra)			
Podziemne magazyny gazu (PMG)			
Nazwa	Typ magazynu	Pojemność czynna mln [m³]	
Swarzów	sczerpane złoże gazu	90	
Strachocina	sczerpane złoże gazu	330	
Brzeźnica	sczerpane złoże gazu	65	
Husów	sczerpane złoże gazu	350	
Wierzchowice	sczerpane złoże gazu	575	
Mogilno	kawerna solna	412	
Razem		1822	

Perspektywy rozbudowy pojemności magazynowej

<u>W budowie</u>

Kosakowo

<u>Realizowana lub planowana rozbudowa</u>

- Brzeźnica
- > Husów
- Wierzchowice
- > Mogilno

<u>Planowana budowa nowych magazynów</u>

- Bonikowo
- Daszewo
- > Tarnów
- > Tuligłowy
- Nowa Ruda
- Moszczenica

w zaniechanych kopalniach

Rozmieszczenie podziemnych magazynów w Polsce

2. Geomechaniczna ocena masywu skalnego dla potrzeb projektowania magazynów w sczerpanych złożach ropy naftowej i gazu

Charakterystyka magazynów w sczerpanych złożach ropy naftowej i gazu ziemnego

- najbardziej rozpowszechniony rodzaj PMG,
- najmniejsze koszty budowy, będące wynikiem:
 - istniejącej infrastruktury do zatłaczania i odbioru gazu,
 - znajomości parametrów geologiczno-złożowych rozpoznanych już na etapie eksploatacji,
- bardzo duża pojemność,
- praca w cyklach rocznych,
- wzrost pojemności porowej (czynnej) w kolejnych cyklach zatłaczania wskutek wypierania wód złożowych.

Zakres badań dla potrzeb geomechnicznej charakterystyki masywu skalnego

Najistotniejszymi elementami geomechanicznej oceny masywu skalnego jest:

- wykazanie czy eksploatacja magazynu nie spowoduje zagrożenia w postaci rozszczelnienia ośrodka skalnego,
- wykazanie czy właściwości mechaniczne górotworu w otoczeniu magazynu zapewniają jego długotrwałą stateczność.

Dokonanie takiej oceny wymaga wykonania odpowiednich badań właściwości mechanicznych oraz przeprowadzenia procedury obliczeń ciśnienia szczelinowania, tak dla skał serii złożowej jak i serii uszczelniających.

Badania właściwości mechanicznych obejmują:

- oznaczenie wytrzymałości na rozciąganie,
- oznaczenie parametrów wytrzymałościowych i deformacyjnych w jednoosiowym lub trójosiowym stanie naprężenia.

Oznaczanie wytrzymałości na rozciąganie σ_T

Wytrzymałość na rozciąganie stanowi podstawowy parametr obliczania ciśnienia szczelinowania.

- metoda oznaczania poprzecznego ściskania (metoda brazylijska),
- próbka walec (krążek) o średnicy d = 42 54 mm i wysokości h równej połowie średnicy,
- sposób obciążania siła ściskająca równomiernie rozłożona wzdłuż tworzącej pobocznicy walca,
- prędkość obciążania 100 N/s; prędkość odniesiona do przekroju poprzecznego – 0,1 0,5 MPa/s.

P – wartość siły przy której wystąpiło pęknięcie, [MN],
d – średnica próbki, [m],
h – wysokość próbki, [m]

Prasa sztywna

Aparat do badania skał w trójosiowym stanie naprężenia

Charakterystyki naprężenie – odkształcenie w jednoosiowym stanie naprężenia

granica wytrzymałości

próg lokalizacji odkształceń

próg niestabilnej propagacji spękań

granica liniowości $\sigma_1 - \varepsilon_1$

granica liniowości $\sigma_1 - \varepsilon_3$; $\sigma_1 - \varepsilon_v$ (próg stabilnej propagacji spękań)

próg liniowości $\sigma_1 - \varepsilon_1$; $\sigma_1 - \varepsilon_v$ próg liniowości $\sigma_1 - \varepsilon_3$

Fazy odkształceń stanu przedkrytycznego w badaniu jednoosiowego ściskania

Parametry wytrzymałościowo-deformacyjne z testu jednoosiowego ściskania

E	—	moduł sprężystości
		liniowej

- v współczynnik Poissona
- R_c wytrzymałość na jednoosiowe ściskanie,
- L_3 granica sprężystości charakterystyki $\sigma_1 - \epsilon_{3,}$
- ^Rε₁ odkształcenie osiowe na granicy wytrzymałości,
- ^Rε₃ odkształcenie poprzeczne na granicy wytrzymałości
- σ₀ ciśnienie zamykania szczelin

Parametry wytrzymałościowo-deformacyjne z testu trójosiowego ściskania

Procedura obliczania ciśnienia szczelinowania (1)

1. Pierwotny stan napięcia w górotworze

Wielkość naprężenia pionowego σ_v na głębokości H określa równanie:

$$\sigma_v = \int_0^H
ho(h) g dh$$
 [MPa]

- ρ gęstość objętościowa skał nadkładu, [kg/m³],
- g stała grawitacji,
- H głębokość.

Jeżeli przyjmiemy stałą gęstość objętościową skał nadkładu powyższy wzór przyjmie postać:

$$\sigma_v = \rho \cdot g \cdot H$$
 [MPa]

Wskutek braku możliwości rozszerzania się skał w poziomie w masywie górotworu powstają naprężenia poziome.

Wielkość naprężenia poziomego σ_H na głębokości *H* określa wzór:

$$\sigma_{Hmin} = \frac{\nu}{1-\nu}(\sigma_v - \alpha p) + \alpha p \quad [MPa]$$

 $\sigma_{H min}$ – minimalne naprężenie poziome, [MPa],

- *p* ciśnienie porowe (przyjmuje się równe ciśnieniu odbioru gazu), [MPa],
- α stała Biota, [-].

Dla skał zbiornikowych złóż węglowodorów zwykle przyjmuje się:

$$a = 0,7$$
 oraz $v = 0,25$.

2. Ciśnienie szczelinowania

Ciśnienie szczelinowania to ciśnienie przy którym następuje zniszczenie skały wskutek przekroczenia wytrzymałości.

Ciśnienie szczelinowania oblicza się w oparciu równania (Carnegie et,al..2002; Economides, Nolte, 1998):

a) maksymalna wartość ciśnienia szczelinowania (górna granica) [MPa]

$$\sigma_{f,max} = 3\sigma_{H,min} - \sigma_{H,max} - p + \sigma_{Tw}$$

b) minimalna wartość ciśnienia szczelinowania (dolna granica [MPa]

$$\sigma_{f,min} = \frac{3\sigma_{H,min} - \sigma_{H,max} - 2\eta p + \sigma_{Tw}}{2(1-\eta)}$$

Procedura obliczania ciśnienia szczelinowania (4)

- $\sigma_{H,min}$ minimalne naprężenie poziome (równe naprężeniu geostatycznemu), [MPa],
- σ_{H,max} maksymalne naprężenie poziome (suma naprężenia geostatycznego i tektoni-cznego), [MPa],
- σ_{Tw} wytrzymałość na rozciąganie próby nasyconej, [MPa],
- *p* ciśnienie porowe, [MPa],

n

współczynnik obliczany ze wzoru:

$$\eta = \frac{\alpha(1-2\nu)}{2(1-\nu)}$$

a – stała Biota, [-], v - współczynnik Poissona

PMG "Swarzów"

1. Złoże pierwotne

średnia głębokość zalegania 650 [m], pierwotne ciśnienie złożowe 7,65 [MPa], ciśnienie po zakończeniu eksploatacji 4,67 [MPa]. 234 mln m³ zasoby wydobyte zasoby pozostawione (buforowe) **85 mln m³** 2. Charakterystyka pracy magazynu ciśnienie zatłaczania 7,80 [MPa], ciśnienie odbioru 4,55 [MPa], $700 \text{ m}^3/\text{min} (1 \text{ mln m}^3/\text{doba})$ wydajność zatłaczania długość cyklu zatłaczania 100 – 120 dni długość cyklu odbioru 90 – 100 dni

4. Parametry wytrzymałościowo-deformacyjne

	R _c [MPa]		σ _{Tw} [Mpa]	
Seria	Zakres wartości	Wartość średnia	Zakres wartości	Wartość średnia
Nadzłożowa	11,5 – 34,4	22,65	0,7 - 2,1	1,37
Poziomu magazynowego	7,8 - 145,5	99,6	0,5 - 10,8	6,45
Podzłożowa	55,1 - 120,2	90,03	4,3 - 17,1	8,35

5. Ciśnienie szczelinowania

Seria	σ _{f, min} [MPa]	σ _{f, max} [MPa]
Nadzłożowa	9,35	11,94
Poziomu magazynowego	12,65	17,02
Podzłożowa	13,88	18,92

6. <u>Wnioski</u>

Wyliczone ciśnienia szczelinowania zarówno dla poziomu magazynowego, jak i serii uszczelniających poziom magazynowy są zatem wyższe od maksymalnej wartości ciśnienia dennego w fazie zatłaczania gazu ziemnego do złoża (PMG), tj. 7,8 MPa, co z kolei pozwala przyjąć, że założone w projekcie maksymalne ciśnienie robocze $P_{max} =$ 7,8 MPa nie zagraża rozszczelnieniem ośrodka skalnego. 3. Geomechaniczna ocena masywu skalnego dla potrzeb projektowania magazynów w kawernach solnych

Charakterystyka magazynów w kawernach solnych

Kawerna solna – pusta przestrzeń w złożu soli wytworzona w procesie ługowania z otworu wiertniczego odwierconego z powierzchni (przypadek dominujący) lub powstała w wyniku eksploatacji złoża.

<u>Magazyn kawernowy</u> może stanowić jedna, kilka a nawet kilkadziesiąt kawern.

Zalety magazynów w kawernach solnych

- powszechnie uznane za najlepsze środowisko do magazynowania,
- duże pojemności magazynowe,
- korzystne własności geomechaniczne (zwięzłość, wytrzymałość) umożliwiające bezpieczne wykonanie wyrobisk,
- nieprzepuszczalność skał solnych umożliwiająca izolację od wód podziemnych,
- długotrwała szczelność jako wynik plastycznego zachowanie się soli, która zamyka wszystkie pęknięcia,
- wysoki wydatek poboru gazu z kawern (100 000 m³/godz.) spełnianie roli szczytowych magazynów do błyskawicznego pokrywania krótkotrwałych bardzo dużych deficytów gazu,
- możliwość pracy rewersyjnej (wielokrotnych cykli zatłaczania i odbioru gazu w ciągu roku),
- ługowalność soli tanie wykonanie kawern,
- obojętność chemiczna soli względem większości magazynowanych substancji.

Warunki przydatności złoża soli do budowy magazynu

Lokalizacja struktur solnych perpektywicznych do budowy kawernowych magazynów 1 – Bełchatów, 2 – Rogoźno, 3 – Lubień Kujawski, 4 – Łanięta, 5 – Izbica Kujawska, 6 – Damasławek, 7 – Łeba, 8 – Swarzewo, 9 – Mechelinki, 10 – złoże LGOM

złoże musi być nieprzepuszczalne, nie można budować magazynów w strefach porowatych i kawernistych, >musi mieć odpowiednią formę, wielkość i głębokość zalegania, odpowiednie usytuowanie warstw w złożu i otaczającym górotworze, sól powinna mieć odpowiedni skład – w szczególności nie powinna zawierać większej ilości łatwo rozpuszczalnych soli potasowo-magnezowych.

W Polsce w chwili obecnej jest 1 magazyn kawernowy – Mogilno (8 kawerno pojemności 416 mln m³, docelowo 20 kawern o pojemności 1,15 mld m³.

Elemnety geomechnicznego projektowania

Projektowanie magazynów w kawernach solnych skład się z dwóch części:

- części geomechanicznej,
- części dotyczącej technologii ługowania (wytworzenia kawerny).

Część geomechaniczna obejmuje określenie:

- głębokości posadowienia komór magazynowych, kształtu i wymiarów kawern oraz określenie wielkości calizn ochronnych w polu magazynowym w powiązaniu z ciśnieniem magazynowanego medium,
- > warunku długotrwałej stateczności kawern,
- > ekstremalnych wartości ciśnień magazynowanego medium:
 - maksymalnego dopuszczalnego ciśnienia szczelinowania,
 - minimalnego ciśnienia niezbędnego do wyparcia solanki,
 - minimalnego dopuszczalnego ciśnienia zapewniającego stateczność ścian kawerny i dopuszczalnej konwergencji komory solnej,
- maksymalnego dopuszczalnego wytężenie materiału na ścianie komory,
- > dopuszczalnej wielkość konwergencji komory.

Specyficzne własności soli

Sól jest ośrodkiem reologicznym. Charakterystyczną cechą tych ośrodków jest istotny wpływ czasu na ich stan mechaniczny, a w szczególności na wielkość odkształceń. Uwidacznia się to między innymi w postaci zjawiska pełzania, polegającego na przyroście odkształceń w czasie przy stałej wielkości obciążeń.

Fazy odkształceń soli

- O A odkształcenie sprężystoplastyczne powstające natychmiast po przyłożeniu obciążenia,
- A B pełzanie pierwotne odkształcenia zmierzają asymptotycznie do wartości charakterystycznych dla odkształceń sprężystych ; prędkość pełzania maleje,
- B C pełzanie stacjonarne odkształcenia rosną liniowo z czasem; w tej fazie dochodzi do największych odkształceń,
- C D odkształcenia niekontrolowane, gwałtowne przyspieszenie odkształceń prowadzące do zniszczenia struktury.

Głębokość posadowienia i wymiary kawerny

Wraz z głębokością rośnie ciśnienie litostatyczne. Przekroczenie przez nacisk nadkładu granicy plastyczności powoduje, że w wyniku pełzania sól będzie wpływać do komory na całej jej powierzchni powodując zmniejszenie jej objętości, czyli tzw. konwergencję. Kawerny ulegają zaciskaniu, a otaczający górotwór ulega deformacjom i przemieszczeniom. Może to doprowadzić do rozszczelnienia oraz utraty stateczności. Sposobem przeciwdziałania utracie stateczności jest utrzymanie W komorze podwyższonego ciśnienia. tzw. poduszki gazowej, to jest gazu "martwego", który musi pozostać w komorze.

Głębokość położenia stropu kawerny (H) oraz jej wysokość (h) są zatem ściśle powiązane z wartością minimalnego ciśnienia wymaganego dla zapewnienia stateczności kawerny.

Długotrwała stateczność kawerny limitowana jest dwoma czynnikami:

- dopuszczalną wielkością wytężenia materiału na ściankach kawerny
 - zbyt niskie ciśnienie magazynowanego medium powoduje wykruszanie się ścian oraz ich deformacje i przemieszczenia
- utrzymaniem szybkości konwergencji w dopuszczalnych granicach, czyli niedopuszczenie aby górotwór wszedł w fazę niekontrolowanych odkształceń

czym niższe ciśnienie tym kawerna ulega większej konwergencji

Charakterystyka magazynów w kawernach solnych

Minimalne ciśnienie wymagane dla zapewnienia stateczności kawerny określa wzór:

$$n_1 p_w = \frac{2\nu R_r}{(1-\nu)(R_c+R_r)} \gamma_{\acute{s}r}(H+h) - \frac{R_c R_r}{R_c+R_r}$$

- n_1 współczynnik bezpieczeństwa ze względu na stateczność komory,
- p_w ciśnienie magazynowanego medium,

- R_c wytrzymałość na jednoosiowe ściskanie,
- R_r wytrzymałość na rozciąganie,
- γ_{sr} średni ciężar objętościowy skał nadkładu,
- H głębokość posadowienia stropu kawerny,
- h wysokość kawerny.

Maksymalne dopuszczalne ciśnienie szczelinowania

Jakkolwiek podwyższone ciśnienie magazynowanego medium wpływa korzystnie na stan naprężenia na konturze komory (zapewnia stateczność, przeciwdziała konwergencji) to z uwagi na szczelność nie można dopuścić do zjawiska szczelinowania górotworu.

Zjawisko szczelinowania zachodzi wówczas gdy ciśnienie p_w przekroczy wartość ciśnienia pierwotnego w stropie komory. Zatem warunek szczelności komory przedstawia wzór:

$$n_2 \cdot p_w = \gamma_{sr} \cdot H$$

n₂ – współczynnik bezpieczeństwa ze względu na szczelinowanie górotworu,

- γ_{sr} średni ciężar objętościowy skał nadkładu,
- H głębokość stropu kawerny.

Minimalne ciśnienie niezbędne do wyparcia solanki

Po zakończeniu ługowania solankę znajdującą się w komorze wytłacza się poprzez pierwsze zatłaczanie magazynowanego medium.

Warunkiem opróżnienia komory jest wytworzenie ciśnienia p_w które pokona ciśnienie solanki w spągu komory z uwzględnieniem oporów przepływu n_3 .

Warunek opróżnienia komory przedstawia zatem wzór:

$$p_w = n_3 \gamma_0 (H + h)$$

Minimalne ciśnienie niezbędne do wyparcia solanki jest funkcją głębokości posadowienia spągu komory (*H*+*h*)

Konwergencja (1)

Komora magazynowa oprócz warunku naprężeniowego musi również spełniać warunek odkształceniowy celem utrzymania szybkości konwergencji w dopuszczalnych granicach.

Konwergencja komory magazynowej jest zjawiskiem szkodliwym – zmniejsza objętość magazynową . Dla przykładu: przy względnej konwergencji wynoszącej 2 % objętość komory po 30 latach będzie wynosić 55 % jej objętości.

Porównanie kształtu komory magazynowej na początku i po 5 latach eksploatacji (Ślizowski 2000)

Konwergencja (2)

Wielkość konwergencji zależy od: średniej gęstości skał nadkładu, parametrów wytrzymałościowych i reologicznych soli głębokości stropu i wysokości komory oraz od ciśnienia magazynowanego medium.

Wpływ ciśnienia magazynowanego medium na głębokość posadowienia stropu komory zbiornikowej i jej wysokość

Interwały posadowienia komór gazowych lokowanych w wysadach solnych są funkcją ekstremalnych wartości ciśnień magazynowanego medium.

1- warunek stateczności, 2 – warunek opróżnienia komory, 3 – warunek szczelności (Kłeczek 1989)